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Ground-state degeneracy of Potts antiferromagnets: cases
with noncompactW boundaries having multiple points at
1/q = 0

Robert Shrock† and Shan-Ho Tsai‡
Institute for Theoretical Physics, State University of New York, Stony Brook, NY 11794-3840,
USA

Received 20 August 1998

Abstract. We present exact calculations of the zero-temperature partition function,
Z(G, q, T = 0), and ground-state degeneracy (per site),W({G}, q), for the q-state Potts
antiferromagnet on a number of families of graphs{G} for which the boundaryB of regions
of analyticity of W in the complexq-plane is noncompact and has the properties that (i) in
the z = 1/q-plane, the pointz = 0 is a multiple point onB and (ii) B includes support for
Re(q) < 0. These families are generated by the method of homeomorphic expansion. Our
results give further insight into the conditions for the validity of large-q series expansions for
the reduced functionWred= q−1W .

1. Introduction

This paper continues our study of nonzero ground-state entropy,S0({G}, q) 6= 0, i.e.
ground-state degeneracy (per site)W({G}, q) > 1, whereS0 = kB lnW , in q-state Potts
antiferromagnets [1, 2] on various lattices and, more generally, families of graphs{G}. There
is an interesting connection with graph theory here, since the zero-temperature partition
function of the above-mentionedq-state Potts antiferromagnet on a graphG satisfies
Z(G, q, T = 0)PAF = P(G, q), whereP(G, q) is the chromatic polynomial expressing
the number of ways of colouring the vertices of the graphG with q colours such that no
two adjacent vertices have the same colour [3–6]. Thus,

W
([

lim
n→∞G

]
, q
)
= lim

n→∞P(G, q)
1/n (1.1)

wheren = v(G) is the number of vertices ofG. An example of a real substance exhibiting
nonzero ground-state entropy is ice [7, 8]. Just as complex analysis provides deeper insights
into real analysis in mathematics, the generalization fromq ∈ Z+, to q ∈ C yields a deeper
understanding of the behaviour ofW({G}, q) for physical (positive integral)q. In general,
W({G}, q) is an analytic function in theq-plane except along a certain continuous locus of
points, which we denoteB (and at possible isolated singularities which will not be relevant
here). In the limit asn → ∞, the locusB forms by means of a coalescence of a subset
of the zeros ofP(G, q) (called chromatic zeros ofG) [9]. In a series of papers we have
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calculated and analysedW({G}, q) for a variety of families of graphs [11–16], both for
physical values ofq (via rigorous upper and lower bounds, large-q series calculations, and
Monte Carlo measurements) and for the generalization to complex values ofq.

A basic question that one can ask about the locusB for the (n→∞ limit of a) family
of graphs{G} is whether it extends only a finite distance from the origin of theq-plane
or, instead, extends an infinite distance away from this origin (i.e. passes through the point
z = 0 in the z = 1/q-plane), and hence is noncompact. The importance of this question
for the statistical mechanics ofq-state Potts antiferromagnets is that large-q Taylor series
provide a powerful means of obtaining approximate values of the ground-state degeneracy
even for moderate values ofq [17–19, 14, 15], but these exist if and only if the reduced
function Wred({G}, q) = q−1W({G}, q)† is analytic at 1/q = 0, which, in turn, is true
if and only if the nonanalytic boundaryB does not pass throughz = 0. Large-q series
calculations ofWred have been derived for regular lattices [17–19], but we noted [12] that
for the r → ∞ limit of the graphK2 + Cr the locusB, which is noncompact [10], no
such large-q series exists. Here,Kp denotes the complement of the complete graphKp‡.
It is clearly important to understand better the differences between the behaviour of Potts
antiferromagnets on families of graphs that yieldWred({G}, q) functions analytic atz = 0
and those that do not, i.e. those that yield noncompact lociB passing throughz = 0 [13].
In this paper, we carry out such a study for families of graphs which are homeomorphic
expansions of the following type. We start with families of the form(Kp)b+Gr , whereGr

is a given graph family withr vertices,b signifies the removal of certain bonds in theKp
subgraph, andG+H is the ‘join’ of the graphsG andH§. We then performhomeomorphic
expansionof the bondsconnectingtheKp andGr subgraphs. This family is categorized as
being of type HEC. An interesting feature of the families analysed here is that, in contrast
to those that we have previously studied, they yield lociB (which are boundaries of regions
of analyticity ofW ) that have support for Re(q) < 0 and for which the pointz = 0 is a
multiple point on the algebraic curveB in the technical terminology of algebraic geometry
[20], i.e. a point where several branches of this curve cross each other. For basic definitions
on homeomorphic classes of graphs, see [6]; some recent work on homeomorphism classes
in a different direction than ours is [22].

A general form for the chromatic polynomial of ann-vertex graphG is

P(G, q) = c0(q)+
Na∑
j=1

cj (q)aj (q)
tj n (1.2)

wherecj (q) andaj (q) are certain functions ofq. Here theaj (q) andcj 6=0(q) are independent
of n, while c0(q) may containn-dependent terms, such as(−1)n, but does not grow with
n like (constant)n. A term a`(q) is defined as ‘leading’ if it dominates then → ∞ limit
of P(G, q); in particular, ifNa > 2, then it satisfies|a`(q)| > 1 and|a`(q)| > |aj (q)| for
j 6= `, so that|W | = |a`|tj . The locusB occurs where there is a nonanalytic change inW

as the leading termsa` in equation (1.2) changes.

† This reduced function is a natural object to define since an obvious upper bound onP(G, q) describing the
colouring of ann-vertex graph withq colours isP(G, q) 6 qn, and henceW({G}, q) 6 q; this guarantees that
limq→∞Wred({G}, q) is a finite quantity (even if it is sometimes nonanalytic at this point). The large-q series
take their simplest form as series in the expansion variabley = 1/(q − 1) for the equivalent reduced function
W({G}, q) = q−1(1− q−1)−1/2W({G}, q), where1 is the coordination number of the lattice.
‡ The complete graphKn on n vertices is defined as the graph where each of these vertices is connected to all of
the othern− 1 vertices by bonds. The complementKn of Kn is the graph withn vertices and no bonds.
§ The ‘join’ of two graphsG andH is obtained by adding bonds connecting each of the vertices ofG to those of
H . This was denotedG×H in [13]; here we use the more common notation for this object in the mathematical
literature, namelyG+H .
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Since for the families of graphs studied here, the boundaryB is noncompact in the
q-plane, it is often more convenient to describe the boundary in the complexz- or y-planes,
where, as above,z = 1/q, and

y ≡ 1

q − 1
= z

1− z . (1.3)

The variabley is commonly used in large-q series expansions. For the families considered
hereB is actually compact in they- andz-planes. We define polar coordinates as

z = ζeiθ (1.4)

and

y = ρeiβ (1.5)

and the function

Dk(q) = P(Ck, q)

q(q − 1)
= ak−2

k−2∑
j=0

(−a)−j =
k−2∑
s=0

(−1)s
(
k − 1

s

)
qk−2−s (1.6)

wherea = q − 1 = 1/y andP(Ck, q) is the chromatic polynomial for the circuit (cyclic)
graphCk with k vertices,

P(Ck, q) = ak + (−1)ka. (1.7)

We shall also use a standard notation from combinatorics,

q(p) = p!

(
q

q − p
)
=

p−1∏
s=0

(q − s). (1.8)

The organization of this paper is as follows. In section 2 we construct several general
multiparameter homeomorphic classes of families of graphs that, in a certain limit, yield
noncompact boundariesB(q). In sections 3–5 we give exact calculations of the respective
boundariesB for three such families. These exhibit features going beyond those that we
found in our earlier work in three main ways: (i) the pointz = 0 can be a multiple
point; (ii) B includes support for Re(q) < 0, and (iii) it is no longer true in general that
Re(q) = 0⇔ q = 0 for q ∈ B. A general discussion of our findings is given in section 6,
and our conclusions are presented in the final section.

2. Homeomorphic classes of HEC type

We can construct a large variety of families of graphs with noncompact boundariesB(q)
of regions where the respectiveW -functions are analytic by performing homeomorphic
expansions of the basic family constructed and analysed before [13]:

(Kp)b +Gr (2.1)

where, as before,b denotes the removal ofb bonds connecting a vertexv in the Kp
subgraph to the other vertices ofKp. Since each vertexv ∈ Kp has degree1 = p − 1, b
is bounded above according tob 6 p − 1. We have shown earlier that (i) the locusB for
limr→∞[(Kp)b +Gr ] is noncompact in theq-plane, passing throughz = 1/q = 0 [13] and
(ii) the analogous locus for ther →∞ limit of homeomorphic expansions of this family has
the same noncompactness property. To construct specific homeomorphic expansions, select
a vertexv1 in theKp subgraph and perform homeomorphic expansion on each of the bonds
connecting this vertex with the vertices inGr by insertingk1 − 2 additional degree-two
vertices on each of these bonds, wherek1 > 3. Then continue this process with a second
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(b)(a)

(c) (d)

Figure 1. Illustrations of families of graphs considered in the text: (a) Hk,r =
HECk1−2,k2−2(K2 + Kr), with r = 4 and k1 = 3, k2 = 4, whencek = k1 + k2 − 1 = 6;
(b) 2k1,r = HECk1−2,0,0(K3 + Tr ) with k1 = 3 andr = 4; (c) Ok1,r = HECk1−2,0(K2 + Tr )
with k1 = 3 andr = 4; (d) Uk,r = HECk1−2,k2−2(K2 + Tr ) with k1 = k2 = k = 3 andr = 4.
Here,Kp is the complete graph withp vertices andTr is the tree graph withr vertices.

vertexv2 ∈ Kp, insertingk2−2 additional degree-two vertices on each of bonds connecting
v2 with the vertices ofGr , and so forth for the other vertices inKp (including the vertexv
from which theb bonds were removed. We denote the resultant homeomorphic expansion
as

HECk1−2,k2−2,...,kp−2[(Kp)b(v) +Gr ]. (2.2)

The labelling is chosen so that, counting the two vertices on the original bond connecting to
vj ∈ Kp together with thekj −2 inserted vertices, there is a total ofkj vertices in what was
originally this single bond. Some illustrative examples of this and other types of families
to be discussed are shown in figure 1.

Another starting family with a noncompactB in the r →∞ limit is

(Kp){b};{v} +Gr (2.3)

where the subscript{b} refers to the removal of multiple bonds from a set of non-adjacent
vertices{v} of the Kp subgraph. Performing the HEC-type homeomorphic expansion as
above leads to the family

HECk1−2,k2−2,...,kp−2[(Kp){b};{v} +Gr ]. (2.4)

A special case of equation (2.4) applies if in the starting family one removes all of the
bonds connecting vertices in theKp subgraph to each other, so that this starting family is

Kp +Gr. (2.5)

The HEC-type homeomorphic expansion of this family is thus

HECk1−2,k2−2,...,kp−2(Kp +Gr). (2.6)

In this case one clearly obtains the same homeomorphically expanded family if one permutes
the choices ofkj :

HECk1−2,k2−2,...,kp−2(Kp +Gr) = HECπ(k1)−2,π(k2)−2,...,π(kp)−2(Kp +Gr) (2.7)
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whereπ is an element of the permutation group onp objects,Sp. The number of vertices
in the homeomorphic classes of families (2.2), (2.4), and (2.6) is the same, namely

v(HECk1−2,k2−2,...,kp−2[(Kp)b +Gr ]) = v(HECk1−2,k2−2,...,kp−2[(Kp){b};{v} +Gr ])

= v(HECk1−2,k2−2,...,kp−2[Kp +Gr ]) = p + r
(

1− 2p +
p∑
j=1

kj

)
. (2.8)

Note that forp = 2, since one can only removeb = 1 bond in theK2 subgraph, thereby
obtaining(K2)b=1 = K2, it follows also that

HECk1−2,k2−2[(K2)b=1+Gr ] = HECk1−2,k2−2[K2+Gr ]. (2.9)

For the caseGr = Kr , the chromatic number is

χ(HECk1−2,k2−2,...,kp−2[Kp +Kr ]) = 2. (2.10)

ForGr = Tr , for the casesr > 2 of interest here,

χ(HECk1−2,k2−2,...,kp−2[Kp + Tr ]) = 3 (2.11)

so that forr > 2,

P(HECk1−2,k2−2,...,kp−2[Kp + Tr ], q = 2) = 0. (2.12)

For ther = 1 case, this family degenerates to a tree graph,

HECk1−2,k2−2,...,kp−2[Kp + T1] = Tvt wherevt = 1+
p∑
j=1

(kj − 1) (2.13)

with chromatic polynomialP(Tvt , q) = q(q − 1)vt−1 and chromatic numberχ = 2.
A general result for the chromatic polynomial in the caser = 2, Gr = Tr is

P(HECk1−2,k2−2,...,kp−2[Kp + T2], q) = q(q − 1)
p∏
j=1

D2kj−1. (2.14)

Since the respective indices 2kj − 1 of each of theD2kj−1 in equation (2.14) are odd and
since

Dk odd= (q − 2)× pol(q) (2.15)

where pol(q) is a polynomial inq of degreek − 3, it follows that

P(HECk1−2,k2−2,...,kp−2[Kp + T2], q) = q(q − 1)(q − 2)p × pol′(q) (2.16)

where pol′(q) is a polynomial of degree 2
∑p

j=1(kj − 2).
Since the number of verticesn = v is a linear function ofp, r, andk1, . . . , kp, there

are several ways of producing the limitn→∞ (L denotes limit):

Lp : p→∞ with r, k1, . . . , kp fixed (2.17)

Lr : r →∞ with p, k1, . . . , kp fixed (2.18)

Lkj : kj →∞ with p, r, k1, . . . , kj−1, kj+1, . . . , kp fixed (2.19)

and, for the case where all of thekj ’s are the same, i.e.kj = kcb∀j (where the subscript cb
denotes ‘connecting bond’),

Lk : kcb→∞ with p, r fixed. (2.20)

As discussed before [13], the limitLp is not of much interest from the viewpoint of either
statistical mechanics or graph theory, since for any given graphGr and for any given
(finite) value ofq ∈ Z+, asp becomes sufficiently large, one will not be able to colour the
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graph(Kp)b+Gr or homeomorphic expansions thereof, and the chromatic polynomial will
vanish. The limitsLkj andLk are also not of primary interest here since they generically
yield compact boundariesB, as will be illustrated below. We shall therefore concentrate on
the limit Lr . The lowest choice ofp that yields a noncompact boundaryB(q) is p = 2.

For generalp and Gr , we remark on two special types of HEC homeomorphic
expansions. A minimal case is one in which the above homeomorphic expansion is carried
out only on the bonds connecting a single vertex, taken to bev1 with no loss of generality,
in Kp to vertices inGr , sok2 = k3 = · · · = kp = 2:

HECk1−2,0,...,0(Kp +Gr). (2.21)

A particularly symmetric case is the one in which the homeomorphic expansions are the
same on all of the connecting bonds:

HECk1−2,k2−2,...,kp−2(Kp +Gr) with k1 = k2 = · · · = kp ≡ kcb. (2.22)

In this case, the right-hand side of equation (2.8) reduces tov = p + r + pr(kcb− 2). We
proceed to give detailed analyses of some special families of homeomorphic expansions.

3. Class of familiesHECk1−2,k2−2(K2+Kr)

The familyHECk1−2,k2−2(K2+Kr) has the special property that the graphs of this family
only depend on the sum ofk1 andk2, not on each of these parameters individually:

HECk1−2,k2−2(K2+Kr) = HECk′1−2,k′2−2(K2+Kr)⇔ k1+ k2 = k′1+ k′2. (3.1)

To incorporate this symmetry, we define

Hk,r = HECk−3(K2+Kr) = HECk1−2,k2−2(K2+Kr) wherek = k1+ k2− 1. (3.2)

As will be evident in our explicit results below, the fact that this family has a noncompact
W boundaryB(q) in the Lr limit can be understood to follow from its construction as a
homeomorphic expansion of the starting family(K2)b=1 + Gr = K2 + Gr which (as was
shown previously [13]) has a noncompactB (here,Gr = Kr ). The noncompactness of the
boundaryB obviously implies that in theLr limit, the chromatic zeros have unbounded
magnitudes (in theq-plane), sinceB arises via the coalescence of these chromatic zeros
in this limit [13]†. We note that the casek1 = k2 = 2, i.e. k = 3 is a special case of
the graphs with noncompactB(q) that we have constructed and studied before [13], so we
concentrate on the homeomorphic expansionsk > 3 here. The number of vertices is given
by thep = 2 special case of equation (2.8) with (3.2), namelyv(Hk,r ) = (k− 2)r + 2. For
arbitraryk > 2 andr > 1, Hk,r is bipartite, i.e.

χ(Hk,r ) = 2. (3.3)

For r > 2, the girth isg(Hk,r ) = 2k−2. Indeed, all (non self-intersecting) closed paths are
of this length. Forr = 1 andr = 2, the family degenerates according to

Hk,1 = Tk (3.4)

† For a family of graphsGk,r , rather than analysing the continuous locusB resulting from theLr limit in
equation (2.18) or theLk in equation (2.20), one may formulate a different problem: let{q0}k,r denote the
set of chromatic zeros ofGk,r , and consider the union of this set, summed over bothr and k, denoted
{q0}∀k,r =

∑∞
r=1

∑∞
k=2{q0}k,r . This problem has been considered for the familyGk,r = Hk,r by A Sokal,

who finds (private communication) that the image of this union is dense in the vicinity of the origin,y = z = 0.
We thank Professor Sokal for this communication
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and

Hk,2 = C2k−2 (3.5)

where, as defined above,Tn andCn are, respectively, the tree and circuit graphs withn
vertices. Hence, we shall taker > 3.

By use of the deletion-contraction theorem† we obtain the recursion relation

P(Hk,r , q) = DkP (Hk,r−1, q)+ (−1)k−1q[(q − 1)Dk−1]r−1 (3.6)

which we solve to get the chromatic polynomial

P(Hk,r , q) = q(q − 1)[D2k−2(Dk)
r−2− (q − 1)(Dk−1)

2[(Dk)
r−2− {(q − 1)Dk−1}r−2]] .

(3.7)

This has the form of equation (1.2) withNa = 2,

a1 = Dk (3.8)

and

a2 = (q − 1)Dk−1. (3.9)

In the limit Lr of equation (2.18), the nonanalytic boundary locusB is determined as the
solution of the degeneracy of magnitudes of the leading terms

|a1| = |a2|. (3.10)

To determineB, we multiply equation (3.10) by|q(q − 1)| to obtain |P(Ck, q)| =
|(q − 1)P (Ck−1, q)| (the resultant spurious solutions thereby introduced atq = 0, 1, i.e.
y = −1,∞, are understood to be ignored in the following discussion). Dividing by|a|k
yields

|1+ (−1)kyk−1| = |1+ (−1)k−1yk−2|. (3.11)

Sincey = 0 is a solution of equation (3.11),B is noncompact in theq-plane, passing through
z = 1/q = 0, as noted above (equivalently, equation (3.10) satisfies the condition given in
the theorem of section 4 of [13], that guarantees that the solution locusB is noncompact in
the q-plane). (In contrast, for fixedk, B is compact in thez- or y-plane.)

Furthermore, we find that (i) 2(k − 2) curves onB, consisting of(k − 2) complex-
conjugate (c.c.) pairs, intersect atz = y = 0; (ii) these curves approach the pointz = y = 0
at the angles

φj = βj = ± (2j + 1)π

2(k − 2)
j = 0, . . . , k − 3. (3.12)

Thus, if and only ifk is odd, these angles include±π/2, i.e. a branch ofB crosses the point
z = y = 0 vertically. To prove these results, we write (3.11) in terms of polar coordinates
using equation (1.5):

ρk−2[ρk−2(ρ2− 1)+ 2(−1)k{ρ cos[(k − 1)β] + cos[(k − 2)β]}] = 0. (3.13)

As ρ → 0, so thatz → y (whenceβ → φ), the solution is given by cos[(k − 2)β] = 0,
which yields the results (i) and (ii). In the terminology of algebraic geometry [20], the point
z = y = 0 is a singular (multiple) point on the algebraic curveB of index k − 2.

† We recall the statement of the addition-contraction theorem [4–6]: letG be a graph, and letv and v′ be two
nonadjacent vertices inG. Form (i) the graphGadd in which one adds a bond connectingv andv′, and (ii) the
graphGcontr in which one identifiesv and v′. Then the chromatic polynomial for colouringG with q colours,
P(G, q), satisfiesP(G, q) = P(Gadd, q) + P(Gcontr, q). The reverse process of bond deletion, leading to the
same equation, is known as the deletion-contraction theorem.
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�1.0 �0.5 0.0 0.5 1.0 1.5
Re(z)

�1.0

�0.5

0.0
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1.0
Im

(z
)

(a)

Figure 2. BoundaryB in the z = 1/q-plane for limr→∞Hk,r with k = (a) 4; (b) 5; (c) 6.
Chromatic zeros forHk,r with (k, r) equal to (a) (4, 30); (b) (5, 18); (c) (6, 10) are shown for
comparison.

As a further result, we find that (iii) ifk is odd,B crosses the realq-axis once, at a
valueqc that increases monotonically from32 for k = 3, with limk→∞ qc = 2; (iv) if k is
even,B never crosses the realq-axis, soqc is not defined. To show these results, we first
setβ = 0 in equation (3.13), which becomes

(ρ + 1)2
[
ρk−2+ 2(−1)k

k−3∑
s=0

(−ρ)s
]
= 0. (3.14)

For oddk, this has a single real, positive solution forρ, which decreases monotonically
from ρ = 2 for k = 3, approachingρ = 1 ask →∞. For evenk, equation (3.14) has no
(real) solution forρ. For β = π , equation (3.13) yields

(ρ − 1)2
[
ρk−2+ 2

k−3∑
s=0

ρs
]
= 0. (3.15)

Aside from the rootρ = 1, i.e.y = −1, which is spurious as noted above, equation (3.15)
has no real roots. The result forq follows directly.

The curves comprisingB divide thez-(equivalently,y- or q-) plane intok − 1 regions.
For evenk = 2` and oddk = 2` + 1, these include(` − 1) c.c. pairs of regions. In
the q-plane,B consists ofk − 2 disjoint curves (a line fork = 3); each curve extends
inward from complex infinity, turns around and heads back out to complex infinity along
a different direction. Fork = 3, B is a circle in both they- and z-planes, given by the
equation|y−1| = 1, i.e.|z− 1

3| = 1
3. Fork = 4, 5, 6 we show our calculations ofB in thez-

planes in figure 2. The corresponding plots in they-plane look more like (slightly distorted)
cloverleafs, reflecting the simplicity of the degeneracy equation (3.11) in they-variable. As
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Figure 2. (Continued)

an example, we show the casek = 6 in figure 3 (additional figures in they-plane are given
in [21]). As is clear from figure 2, fork > 4, B has support for Re(q) < 0 (equivalent to
Re(z) < 0). Note that Re(z) = 0 does not, in general, imply thatz = 0, since fork > 4,
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Im

(y
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(c)

Figure 3. BoundaryB in the y = 1/(q − 1)-plane for limr→∞Hk,r with k = 6. Chromatic
zeros forHk,r with r = 10 are shown for comparison.

B intersects the imaginaryz-axis away from the origin, e.g. atz = ±zi , where

zi = i
√

2/5= 0.632 456i fork = 4 (3.16)

zi = i
√

8/7= 1.069 04i fork = 5 (3.17)

zi = (i/3)[10∓
√

82]1/2 = 0.323 971i, 1.455 08i fork = 6. (3.18)

In the y-plane, the interceptsy = ±iρi of B with the imaginaryy-axis (aside fromy = 0)
are given, for evenk = 2`, by

ρ
2(`−1)
i (ρ2

i − 1)− 2(−1)` = 0 (3.19)

and, for oddk = 2` + 1, by equation (3.19) multiplied byρ. Solving these equations for
generalk, we find that (withk > 3) (i) for k = (0 or 1) mod 4,ρi is nonzero, decreasing
monotonically from

√
2 for k = 4, 5 toward 1 ask→∞; (ii) for k = (2 or 3) mod 4, there

is no nonzero interceptρi . AlthoughB extends to Re(z) < 0 (equivalently, Re(q) < 0), it
never includes support for negative realz or q.

In figure 2 we also show illustrative chromatic zeros for (a) k = 4, r = 30 (⇒ n = 62),
(b) k = 5, r = 18 (⇒ n = 56), and (c) k = 6, r = 10 (⇒ n = 42). Aside from the
ever-present zeros atq = 0, 1 (z = ∞, 1), the chromatic zeros generally lie close to the
asymptotic curves comprisingB onto which they coalesce ask → ∞. For a given set
of (finite) k and r, the moduli of the zeros are bounded, and hence they avoid the points
z = y = 0, approaching these only asr →∞ for a givenk.

As before [12, 13], we letR1 denote the region including the positive realq-axis for
q > qc. For k even, this includes the entire realq-axis. For oddk, we denote the region
containing the rest of the realq-axis asR2,k odd; from our statement above, it follows that
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there is noR2 phase fork even. Forq ∈ R1, we calculate

W
([

lim
r→∞Hk,r

]
, q; q ∈ R1

)
=
{

[a2(q)]
1/(k−2) if k is odd

[a1(q)]
1/(k−2) if k is even .

(3.20)

As discussed in [12], in regions other thanR1, there is no canonical choice of phase in
taking the 1/nth root in equation (1.1), so that one can only determine|W({G}, q)|. We
find∣∣∣W([ lim

r→∞Hk,r
]
, q
)∣∣∣ = |a1(q)|1/(k−2) for k odd andq ∈ R2,k odd (3.21)∣∣∣W([ lim

r→∞Hk,r
]
, q
)∣∣∣ = |a2(q)|1/(k−2) for k odd andq 6∈ R1, R2,k odd

and fork even andq 6∈ R1. (3.22)

On B, |W | is continuous but nonanalytic.

4. Class of familiesHECk1−2,0,0(K3+Kr)

Whenp > 3 in the homeomorphic class of families (2.2) or (2.6) withGr = Kr , the graphs
and their chromatic polynomials depend on the individual values of thekj , not just on the
sum, as in equation (3.1). A simple homeomorphic class of families of this type is the
special case of equation (2.21) forp = 3 andGr = Kr , namely

2k,r = HECk1−2,0,0(K3+Kr) k1 ≡ k. (4.1)

We havev(2k,r ) = r(k − 1)+ 3 and

χ(2k,r ) = 2. (4.2)

For our present purposes, it will suffice to study the family23,r . We calculate the chromatic
polynomial

P(23,r , q) = (q − 2)2r−4P(23,2, q)− q(q − 1)(D4)
2[(q − 2)2r−4− (D4)

r−2]

−q(q − 1)2(q − 2)r [(q − 2)r−2− (q − 1)r−2]

−q(q − 1)(q − 2)(q2− 4q + 5)2[(q − 2)2r−4− (q2− 4q + 5)r−2] (4.3)

where

P(23,2, q) = q(q − 1)[(q − 1)D6− (q − 2)D5]. (4.4)

This has the form of equation (1.2) withNa = 4 and

a1 = D4 = q2− 3q + 3 (4.5)

a2 = q2− 4q + 5 (4.6)

a3 = (q − 1)(q − 2) (4.7)

and

a4 = (q − 2)2. (4.8)

The nonanalytic boundaryB for the limit as r → ∞ is shown in figure 4. As with
theHk,r family discussed above, and the other families to be discussed below, one sees the
important feature thatB includes support for Re(z) < 0 or equivalently Re(q) < 0. The
boundary divides thez-(or equivalentlyy- or q-) plane into six different regions: (i)R1,
including the interval 0< z < 1

2 on the positive realz-axis; (ii) R2, including the union of
the intervalsz > 1

2 and z < 0; (iii) a c.c. pair of regionsR3 andR∗3 lying just above and
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Figure 4. BoundaryB in the z = 1/q-plane for limr→∞23,r . Chromatic zeros for23,r with
r = 16 are shown for comparison.

belowR1 in the z-plane; and (iv) a second pair of c.c. regionsR4 andR∗4 located such that
R4 lies above and adjacent toR3 (hence betweenR3 andR2) andR∗4 lies belowR∗3. In the
regionsR1 andR2, a1 anda2 are dominant, respectively, whileaj is dominant in regions
Rj andR∗j for j = 3 andj = 4, respectively. We have

W
([

lim
r→∞2k,r

]
, q
)
= (a1)

1/2 for q ∈ R1 (4.9)∣∣∣W([ lim
r→∞2k,r

]
, q
)∣∣∣ = |a2|1/2 for q ∈ R2 (4.10)

and ∣∣∣W([ lim
r→∞2k,r

]
, q
)∣∣∣ = |aj |1/2 for q ∈ Rj ,R∗j , j = 3, 4. (4.11)

The region boundaries between regionsRi andRj are the solutions of the respective
degeneracy equation|ai | = |aj | whereai andaj are leading terms. Dividing these equations
by |q|2 and re-expressing them in terms ofz to get the corresponding degeneracy equations in
thez-plane, one has|ãi | = |ãj | with ã1 = 1−3z+3z2, ã2 = 1−4z+5z2, ã3 = (1−z)(1−2z),
and ã4 = (1− 2z)2. Clearly, each(i, j) pair of the degeneracy equations|ãi | = |ãj | in the
z-plane has a solution atz = 0, which shows that, in accordance with the condition of [13],
B is noncompact in theq-plane, passing through the pointz = 0. Thus, as is evident in
figure 4, all of the regions are contiguous atz = 0, where six curves (i.e. three branches)
of B meet in a multiple point. For smallζ = |z|, the degeneracy equation for the part of
B separatingR1 andR3 has the form 2ζ 2(1− 2 cos2 θ)+O(ζ 3) = 0, so that this boundary
crosses the pointz = 0 at the angles given by cosθ = 1/

√
2, i.e.

θR1,R3, θR1,R
∗
3
= ±π

4
. (4.12)
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(The other solution, cosθ = −1/
√

2 is not relevant because in this region,a1 anda3 are not
leading terms.) Similarly, for smallζ , the degeneracy equation for the part ofB separating
the regionsR3 andR4 is ζ(3ζ − 2 cosθ) = 0 so that asζ → 0, this boundary crosses the
point z = 0 at the angles given by cosθ = 0, i.e.

θR3,R4, θR∗3,R
∗
4
= ±π

2
. (4.13)

The same type of reasoning applied to theR2, R4 andR2, R
∗
4 boundaries shows that they

crossz = 0 at the angles

θR2,R4, θR2,R
∗
4
= ±3π

4
. (4.14)

Concerning the boundary separating regionsR1 and R2, we observe that the relevant
degeneracy equation

B(R1− R2) : |1− 3z+ 3z2| = |1− 4z+ 5z2| (4.15)

has the solutionz = 1
2 as its only solution other thanz = 0 wherea1 and a2 are leading

terms. Hence,qc = 2 for this family. Concerning the two c.c. pairs of multiple points, we
note that the multiple pointz2,3,4 where regionsR2, R3, andR4 are contiguous, and its c.c.,
are

z2,3,4, z
∗
2,3,4 = 3−1/2e±iπ/6 = 1

2
± i

2
√

3
. (4.16)

Hence this c.c. pair lies on the unit circle|y| = 1 or equivalently|q − 1| = 1 in the
respectivey- andq-planes:

y2,3,4, y
∗
2,3,4 = e±iπ/3 (4.17)

q2,3,4, q
∗
2,3,4 = 31/2e±iπ/6. (4.18)

A corresponding analysis can be given for the multiple pointz1,2,3 where regionsR1, R2,
andR3 are contiguous.

5. Class of familiesHECk1−2,k2−2(K2+ Tr)

Illustrative graphs of the family

HECk1−2,k2−2(K2+ Tr) (5.1)

with (k1, k2) = (3, 2) and (k1, k2) = (3, 3) are shown in figures 1(c) and (d), respectively.
From the general equation (2.8) withGr = Tr andp = 2, we have

v(HECk1−2,k2−2(K2+ Tr)) = 2+ r(k1+ k2− 3). (5.2)

The special casek1 = k2 = 2 is the familyK2 + Tr = (K2)b=1 + Tr which we analysed
in detail earlier [13] so we concentrate on the homeomorphic expansions of this starting
family here, i.e.k1 > 3 and/ork2 > 3. In order to calculate the chromatic polynomial for
the graphs in this homeomorphic class of families, we shall utilize a generating function
method as we did in [16] for infinitely long, finite-width strip graphs of various lattices.
The generating function0 is a function of a symbolic variablex and yields the chromatic
polynomialsP(HECk1−2,k2−2(K2 + Tr), q) via the Taylor series expansion aroundx = 0
according to

0(HECk1−2,k2−2(K2+ Tr), q, x) =
∞∑
r=1

P(HECk1−2,k2−2(K2+ Tr), q)xr . (5.3)
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The summation starts atr = 1 since this is the minimum value ofr in this family. As in
our earlier work [16], we find that0 is a rational function ofx and, separately, ofq, of the
form

0(HECk1−2,k2−2(K2+ Tr), q, x) = N (HECk1−2,k2−2(K2+ Tr), q, x)
D(HECk1−2,k2−2(K2+ Tr), q, x)

(5.4)

with

N (HECk1−2,k2−2(K2+ Tr), q, x) = x
jmax∑
j=0

Aj(q)x
j (5.5)

(so that degx(N ) = jmax+ 1; the prefactor ofx reflects the fact that the minimum value of
r is 1) and

D(HECk1−2,k2−2(K2+ Tr), q, x) = 1+
j ′max∑
j ′=1

bj ′(q)x
j ′ (5.6)

wherejmax andj ′max depend on the specific family, theAj andbj ′ are polynomials inq, and
their dependence onk1 and k2 is left implicit. (This notation follows that of [16] except
that in equation (5.5), we useA rather thana to avoid confusion with theaj functions in
equation (1.2).) A general formula forA0 is

A0 = P(Tk1+k2−1, q) = q(q − 1)k1+k2−2. (5.7)

The otherAj ’s andbj ′ polynomials will be given below for specific families.
For the starting family,HEC0,0(K2 + Tr) = K2 + Tr = (K2)b=1 + Tr , and indeed its

generalization(Kp)b + Tr , one has [13]

P((Kp)b + Tr, q) = q(p+1)[(q − p − 1)r−1+ b(q − p)r−2] (5.8)

(recall the notation in equation (1.8)). The equivalent representation in terms of a generating
function is obtained by noting that equation (5.8) has the form of equation (1.2) withc0 = 0
andNa = 2, i.e.

P((Kp)b + Tr, q) = c1(a1)
r + c2(a2)

r (5.9)

with

a1 = q − p − 1 a2 = q − p (5.10)

c1 = q(p+1)

q − p − 1
(5.11)

and

c2 = bq(p+1)

(q − p)2 . (5.12)

We find that the chromatic polynomialP((Kp)b + Tr, q) is given as the coefficient ofxr in
the Taylor series expansion aboutx = 0 of the generating function

0((Kp)b + Tr, q; x) = x(A0+ A1x)

(1− λ1x)(1− λ2x)
(5.13)

where

λj = aj j = 1, 2 (5.14)

A0 = a1c1+ a2c2 (5.15)
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and

A1 = −a1a2(c1+ c2). (5.16)

For a general graphG, this type of relation between the form for the chromatic polynomial
(5.9) and the generating function (5.13) has a straightforward generalization to the case
whereNa > 3. In the present case(K2)b=1 + Tr = HEC0,0(K2 + Tr), we find, for the
upper limits on the sums inN (x) andD(x) the valuesjmax= 1 andj ′max= 2.

5.1. FamiliesHECk1−2,0(K2+ Tr)
We first consider the simplest homeomorphic expansion of typeHEC on the starting family
K2+Tr , in which one performs this expansion only on the bonds connecting one of the two
vertices in theK2 subgraph with the vertices of theTr subgraph. With no loss of generality,
we choose this vertex inK2 to bev1, so thatk2 − 2 = 0 andk1 − 2 > 1. For brevity of
notation, define

Ok,r = HECk1−2,0(K2+ Tr) k1 ≡ k (5.17)

with v(Ok,r ) = 2+ r(k − 1). When referring to the collection of the graphs of this family
for various r, we denote it as{Ok}. The casek = 2 is just the original starting family,
K2+ Tr . For the familyOk,r with k > 3 we find that

jmax= 2 j ′max= 3. (5.18)

For generalk > 3, the denominator of the generating function can be written as

D({Ok}, q, x) = [1− (q − 2)Dkx][1 − (q − 3)Dkx − (q − 1)(q − 2)Dk−1Dkx
2]

= (1− λ2x)(1− λ1px)(1− λ1mx) (5.19)

where

λ1p,m = 1
2[(q − 3)Dk ± [{(q − 3)Dk}2+ 4(q − 1)(q − 2)Dk−1Dk]

1/2] (5.20)

and

λ2 = (q − 2)Dk. (5.21)

The coefficient functions inN areA0, given by the special case of equation (5.7), namely
A0 = q(q − 1)k, and

A1 = −q(q − 1)Dk[(2q − 5)(q − 1)k−1− (q − 2)[qDk − 2(−1)k]] (5.22)

A2 = −q2(q − 1)2(q − 2)Dk−1D
2
k . (5.23)

(In deriving the expression forA1, we have used the identityD2k−1 = [qDk − 2(−1)k]Dk.)
We calculate

W({Ok}, q) = (λmax)
1/(k−1) for q ∈ R1 (5.24)

and

|W({Ok}, q)| = |λmax|1/(k−1) for q ∈ Rj 6= R1 (5.25)

whereλmax(q) denotes the leadingλ in equation (5.19) in the respective regions of the
q-plane. For a general family{G} of graphs with a generating function

0({G}, q, x) = N (x)D(x) =
∞∑
j=j0

P(Gr, q)x
r (5.26)
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with

D(x) =
j ′max∏
j ′=1

(1− λjx) (5.27)

the boundaryB in the limit r →∞ is given (see equation (4.16) of the first paper in [16])
as solution locus of the equation expressing the degeneracy in magnitude of two leadingλ

terms in equation (5.27), whereW switches form nonanalytically,

|λmax(q)| = |λmax′(q)|. (5.28)

As an illustration, we consider the lowest homeomorphic expansion,k = 3, for which
equations (5.20) and (5.21) read

λ1p,m = 1
2(q − 2)[(q − 3)± (q2− 2q + 5)1/2] (5.29)

λ2 = (q − 2)2. (5.30)

Let us now writeλ1p, λ1m andλ2 in terms of the variablez = 1/q in polar coordinates, as
given by equation (1.4) and Taylor-expand the resulting expressions for smallζ . We obtain
for the magnitudes squared of theλ’s

|λ1p|2 = 1− 4ζ cosθ + 2ζ 2(cos(2θ)+ 2)+O(ζ 3) (5.31)

|λ1m|2 = ζ 2+O(ζ 3) (5.32)

|λ2|2 = 1− 4ζ cosθ + 4ζ 2+O(ζ 3). (5.33)

Thus, for small values of|z|, the boundaryB is given by the equation|λ1p| = |λ2|, which
yields ζ 2 cos(2θ) + O(ζ 3) = 0 as ζ → 0. Hence,B is noncompact in theq-plane and
crosses the origin of thez-plane at angles such that cos(2θ) = 0, i.e.

θ = π

4
+ nπ

2
06 n 6 3. (5.34)

This is evident in figure 5. From equation (1.3), it follows thaty → z as z → 0, so that
these angles are the same in they-plane. The boundaryB divides thez-plane into four
regions: (i)R1, including the interval 0< z < 1

3 on the realz-axis; (ii) R2, including the
intervals−∞ < z < 0 and 1

3 < z <∞ on the realz-axis; and (iii) the complex-conjugate
pair of regionsR3 andR∗3 lying roughly above and belowz = 0.

We find

W
([

lim
r→∞O3,r

]
, q
)
= (λ1p)

1/2 for q ∈ R1 (5.35)

|W
([

lim
r→∞O3,r

]
, q
)
| = |λ1p|1/2 for q ∈ R2 (5.36)

and

|W
([

lim
r→∞O3,r

]
, q
)
| = |λ2|1/2 for q ∈ R3, R

∗
3. (5.37)

A portion of B crosses the positive real axis atz = zc = 1
3 so thatqc = 3 for limr→∞O3,r .

Along this portion of the boundary|λ1m| becomes degenerate with|λ1p|, although the former
never dominates in magnitude over the latter. This portion of the boundary ends in two c.c.
multiple points. Note that

W
([

lim
r→∞O3,r

]
, q
)
= 0 at q = 2 (5.38)

consistent with equations (2.11) and (2.12).
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Figure 5. BoundaryB in the z = 1/q-plane for limr→∞Ok,r with k = 3. Chromatic zeros for
Ok,r (k, r) = (3, 29) are shown for comparison.

5.2. FamiliesHECk1−2,k2−2(K2+ Tr) with k1 = k2

We next consider the case of symmetric homeomorphic expansion of the bonds from the
two vertices of theK2 subgraph, i.e.k1 = k2 ≡ k. For brevity of notation, we denote

Uk,r = HECk1−2,k2−2(K2+ Tr) k1 = k2 ≡ k (5.39)

with v(Uk,r ) = 2+ r(2k− 3). When referring to the collection of the graphs of this family
for variousr, we denote it as{Uk}.

For the familyUk,r we find that

jmax= 3 j ′max= 4. (5.40)

The denominator of the generating function can be written as

D({Uk}, q, x) = [1− (q − 2)D2
kx − (q − 1)3D2

k−1D
2
kx

2]

×[1−Dk(Dk+1−Dk)x − (q − 1)2Dk−1D
3
kx

2]. (5.41)

Observe that each factor ofx in D({Uk}, q, x) occurs with at least one accompanying factor
of Dk. We have

D({Uk}, q, x) = (1− λ1px)(1− λ1mx)(1− λ2px)(1− λ2mx) (5.42)

where

λ1p,m = Dk

2
[(q − 2)Dk ± [[(q − 2)Dk]

2+ 4(q − 1)3(Dk−1)
2]1/2] (5.43)

and

λ2p,m = Dk

2
[(Dk+1−Dk)± [(Dk+1−Dk)

2+ 4(q − 1)2Dk−1Dk]
1/2]. (5.44)
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For the polynomials in the numeratorN (x), equation (5.7) givesA0 = q(q − 1)2k−2 and
we find

A1 = q(q − 1)[(D2k−1)
2− (q − 1)2k−3[(q − 3)Dk +Dk+1]Dk] (5.45)

A2 = −q(q − 1)2Dk−1D
3
k [q2D2

k − q(q + 2)(−1)kDk + 2q

+q(q − 2)(q − 1)k−2Dk + (q − 2)(−1)k(q − 1)k−2+ 1] (5.46)

A3 = −q3(q − 1)4D3
k−1D

5
k . (5.47)

We calculate

W({Uk}, q) = [λmax(q)]
1/(2k−3) for q ∈ R1 (5.48)

and

|W({Uk}, q)| = |λmax(q)|1/(2k−3) for q ∈ Rj 6= R1 (5.49)

whereλmax(q) refers to the respective dominantλ in the given region. The boundaryB
is given, as before, by the solution locus of equation (5.28). We show this boundary in
figure 6(a), together with illustrative chromatic zeros for the caser = 19. From the property
(2.15), it follows that theλ’s are degenerate at zero whenq = 2,

λ1p,m(q = 2) = λ2p,m(q = 2) = 0 for k odd (5.50)

so thatB passes through the pointq = 2 if k is odd, and, furthermore,

W
([

lim
r→∞Uk,r

]
, q = 2

)
= 0 for k odd. (5.51)

This is consistent with the facts thatχ({Uk}) = 3 andP(Uk,r , q = 2) = 0 as special cases
of equations (2.11) and (2.12).

We next give some explicit results for the lowest two cases,k = 3 andk = 4. For the
family Uk=3,r equations (5.43) and (5.44) yield

λ1p,m;k=3 = 1
2(q − 2)[(q − 2)2± (q4− 4q3+ 12q2− 20q + 12)1/2] (5.52)

λ2p,m;k=3 = 1
2(q − 2)[(q2− 4q + 5)± (q4− 4q3+ 10q2− 20q + 17)1/2]. (5.53)

To investigate the boundary in the vicinity ofz = 0, we divide the degeneracy equations
by |q|3 and express the results in terms ofz = 1/q in polar coordinates, as given by
equation (1.4). We then Taylor-expand these equations for smallζ = |z|. This yields

|λ1p;k=3|2 = 4− 24ζ cosθ + 4ζ 2[8 cos(2θ)+ 9]− 8ζ 3[12 cosθ + cos(3θ)] +O(ζ 4) (5.54)

|λ2p;k=3|2 = 4− 24ζ cosθ + 4ζ 2[8 cos(2θ)+ 9]− 16ζ 3[6 cosθ + cos(3θ)] +O(ζ 4) (5.55)

|λ1m;k=3|2 = 4ζ 2+O(ζ 3) (5.56)

|λ2m;k=3|2 = 4ζ 2+O(ζ 3). (5.57)

Thus, in the vicinity ofz = 0 the boundaryB is given by the equation|λ1p;k=3| = |λ2p;k=3|,
which yields cos(3θ) = 0 for ζ 6= 0. Hence, six curves onB (forming three branches) cross
the pointz = 0 (and hence also the pointy = 0), at angles

θ = π

6
+ nπ

3
06 n 6 5. (5.58)

The boundaryB divides thez-plane into six regions. As one traverses a circle around the
origin, z = 0, starting with a small positive realz-value, firstλ1p;k=3 is dominant, and
then the dominantλ’s alternate betweenλ1p;k=3 andλ2p;k=3. The resultantW -functions are
given by equations (5.48) and (5.49).
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Figure 6. BoundaryB in the z = 1/q-plane for limr→∞ Uk,r with k equal to (a) 3; (b) 4.
Chromatic zeros forUk,r with (k, r) equal to (a) (3,19); (b) (4,15) are shown for comparison.

For the familyUk=4,r equations (5.43) and (5.44) yield

λ1p,m;k=4 = 1
2(q − 2)(q2− 3q + 3)[(q2− 3q + 3)± (q4− 2q3+ 3q2− 6q + 5)1/2] (5.59)
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λ2p,m;k=4 = 1
2(q

2− 3q + 3)[(q3− 5q2+ 9q − 7)

±(q6− 6q5+ 15q4− 24q3+ 35q2− 42q + 25)1/2]. (5.60)

As before, the boundaryB is determined by equation (5.28). This boundary is plotted
in figure 6(b). Let us writeλ1p,m and λ2p,m in terms of the variablez = 1/q in polar
coordinates, as given by equation (1.4) and Taylor-expand the resulting expressions for
small ζ . We find that the twoλ’s that are dominant nearz = 0, namelyλ1p andλ2p, have
squared magnitudes that coincide through O(ζ 4) and differ in O(ζ 5) in the coefficient of
ζ 5 cos(5θ). (The other twoλ’s are subdominant nearz = 0; indeed, they vanish there, as
|λ1m|2 ∼ |λ2m|2 = 4ζ 2 +O(ζ 3).) It follows that asζ → 0, the boundaryB is given by the
equation|λ1p| = |λ2p|, which yields cos(5θ) = 0 for ζ 6= 0. Hence, 10 curves, forming
five branches ofB, cross the pointz = 0 (and alsoy = 0) at the angles

θ = π

10
+ nπ

5
06 n 6 9. (5.61)

Here, the boundaryB divides thez-plane into eight regions. As one traverses a circle around
the origin starting with a small positive real value ofz, first λ1p;k=4 is dominant, and then
the dominantλ’s alternate betweenλ1p;k=4 andλ2p;k=4, as before withk = 3. The resultant
W -functions again follow from eqs. (5.48) and (5.49). Thus, comparing our results forUk,r
with k = 3 andk = 4, we observe that the number of curves onB passing throughz = 0,
and the number of regions, increase ask is increased. One should also remark that certain
properties of the region depend on whetherk is even or odd, such as the fact thatB passes
throughz = 1

2 for odd k > 3.

6. Discussion

In this section we discuss general features of the Potts antiferromagnetW -functions on
all of the families of graphs that we have constructed and studied in this paper and our
earlier work, with lociB that are noncompact in theq-plane. In the theorem of section 4
of [13] we gave the general algebraic condition that for a particular family of graphs, the
infinite-vertex limit yields a locusB that passes throughz = 0. From our calculations we
have observed a geometrical regularity in the families of graphs that have this property,
namely that in this infinite-vertex limit they all contain an infinite number of different,
nonoverlapping (and nonself-intersecting) circuits, each of which passes through at least two
fixed, nonadjacent vertices. This immediately implies that these aforementioned nonadjacent
vertices have degrees1 that go to infinity in this limit. One thus sees at the graphical level
why the derivation of the large-q series for the reduced functionWred({G}, q) or equivalently
W({G}, q) on regular lattices with free or some type of periodic boundary conditions works;
in the thermodynamic limit, such lattices do not have the two or more nonadjacent vertices
with degrees1→∞ as in the criterion stated above for noncompactB.

We remark that in studies of the Potts model on regular lattices, it has been useful to
utilize certain boundary conditions that do involve vertices which, in the thermodynamic
limit, have infinite degree1, since these make it possible to preserve exact duality on finite
lattices [23–25]. On the square lattice, the duality-preserving boundary conditions (DBCs)
of types DBC-1 and DBC-2, in the notation of [25] involve one such vertex with1→∞
while the DBC-3 type involves two such vertices; however, in the latter case, these are
adjacent. Hence, none of these duality-preserving boundary conditions invalidates a large-q

expansion ofWred({G}, q) for this lattice.
An elementary topological property should be noted: for an arbitrary family of graphs,

the continuous locus of pointsB whereW is nonanalytic in the infinite-vertex limit does not
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necessarily enclose regions in theq-plane. Indeed, in [16] we carried out exact calculations
of a variety of infinitely long, finite-width strips of different lattices and found lociB that
consisted of arcs (and line segments) that did not enclose regions. (We have also performed
similar calculations for other types of strips with specific types of end-graphs that yield
loci B that do enclose regions.) None of these loci were noncompact in theq-plane. In
contrast, if the infinite-vertex limit of a family of graphs yields a locusB that passes through
z = 0, then, given that it is not a semi-infinite line segment on the positive or negative
z-plane, it necessarily separates thez- and equivalently theq- or y-planes into at least two
different regions whereW is an analytic function. In [16] we observed that the endpoints of
the arcs (or line segments on the realq-axis) that comprised the nonanalytic locusB were
determined by the branch points of certain algebraic expressions occurring in theλ’s that
entered in degeneracy equations of the form of equation (5.28). Since, for example, theλ’s
for the family {Uk}, equations (5.43) and (5.44), also contain square roots, one may wonder
what role the branch points of these roots play with regard to the boundaryB. We have
investigated this and have found that the analogues of the arcs extending between branch
points of the square roots, which comprised the various boundaries in [16], do not yield
endpoint singularities onB here. The reason for this is that either (i) these arcs involve
degeneracy ofλ’s that are nonleading in a given region, or (ii) although they coincide on
part of their length with the actual boundary, the portion of the arcs containing the endpoints
lies off this boundary, in a region where condition (i) holds. This is illustrated in figure 7
for the {Uk} family with k = 3, where we show the actual boundaryB, as in figure 6(a),
together with the arcs (drawn in a thicker black) formed by the degeneracy conditions

|λ2p| = |λ2m| (6.1)

and

|λ1p| = |λ1m|. (6.2)

The c.c. pair of arcs which constitute the solution locus to equation (6.1), with endpoints
at z2a, z

∗
2a = 0.041 06± 0.436 27i andz2b, z

∗
2b = 0.547 17± 0.083 33i, lie in the interior of

the regionsR4 andR∗4. But in these regions, neitherλ2p nor λ2m is dominant; rather, as
we discussed in the section on theUk,r family, it is λ1p that is dominant in these regions.
Hence, this c.c. pair of arcs is not relevant to the actual boundary. As shown in figure 7, the
locus of solutions for the degeneracy equation (6.2) forms a c.c. pair of arcs that cross each
other and the realz-axis atz = 1

2 and have endpoints atz1a, z
∗
1a = 0.101 69± 0.375 29i

and z1b, z
∗
1b = 0.731 64± 0.126 12i. The portion of these arcs that lie to the right of

Re(z) = 1
2 are not relevant for determining the boundary because in this region, denoted

R2 in our section above on the{Uk} family, the dominantλ is λ2p. The portion of the
c.c. arcs lying between the multiple (crossing) pointz = 1

2 on the right and the multiple
points forming T-intersections on the left atzT , z∗T = 0.3204± 0.2110i does coincide
with the boundary, since on this portion the boundary is determined by the degeneracy
of magnitudes of leading eigenvaluesλ1p and λ1m, i.e. equation (6.2). However, to the
left of these T-intersection points, the arcs forming the solution locus of equation (6.2)
again deviate from the actual boundary, which is determined by the degeneracy of leading
magnitudes|λ2p| = |λ1p|. Hence, once again, the left endpoints of these arcs are not
relevant forB. Thus, the boundariesB for the families considered here, even aside from
the fact that they automatically enclose regions owing to their noncompactness, in contrast
to the arcs comprising the lociB for the strip graphs that we studied in [16], also differ
qualitatively in that they do not contain any arc endpoints. We have explained why this
is so even though some of the families do haveλ’s containing branch points singularities.
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Figure 7. BoundaryB in the z = 1/q-plane for limr→∞ U3,r , shown together with the locus of
solutions of the degeneracy equations (6.1) and (6.2). See text for discussion.

This emphasizes that the existence of the arc-like structure of the lociB that we found in
[16] depended not just on the presence of branch point singularities in theλ’s entering via
equations analogous to equation (5.42) in the denominatorsD of the generating functions
for various strip graphs, but also on the fact that these branch point singularities occurred at
endpoints of arcs in regions where these arcs were the solution loci of magnitude degeneracy
equations for leadingλ’s.

From our studies of many homeomorphic expansions, we have found the general feature
that for a given homeomorphic class parametrized by some set of homeomorphic expansion
indices {kj }, the number of regions separated by the locusB in the r → ∞ limit is a
nondecreasing function of the above expansion indices. This is in accord with the constraints
from algebraic geometry, in particular, the Harnack theorem [20]. The application of this
theorem is simplest in the case whereB is a nonsingular algebraic curve (so that the number
of regionsNreg = Ncomp+ 1 whereNcomp denotes the number of connected components
of B), as is the case for ther → ∞ limit of the families Tk,r = HEGk−2(K2 + Tr)
andSk,r = HEGk−2(K3 + Tr) [26]. In these cases (whereB has no multiple points) the
Harnack theorem states that the number of regions is bounded above byg + 1, whereg is
the genus of the algebraic equation in the variables Re(q) and Im(q) whose solution set
is B, namelyg = (d − 1)(d − 2)/2 whered is the homogeneous degree of this equation.
Since, as our exact solutions show, this degree and the resultant genus increase as a function
of the homeomorphic expansion indices, the Harnack upper bound also increases. It should
be noted, however, that the number of regions may remain the same as one performs a
homeomorphic expansion (e.g.Nreg = 2 for the r → ∞ limit of HEGk−2(K2 + Tr) for
k = 2, 3, and 4, thenNreg= 3 for k = 5, 6, and 7, etc).

For algebraic curvesB with singularities such as multiple points, one no longer has the
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simple relationNreg = Ncomp+ 1. Indeed, in the families constructed and analysed in this
paper,B consists of a single connected component, i.e.Ncomp = 1, while the number of
regionsNreg and the index of the multiple point atz = 0 increase as a function of the indices
{kj } describing the homeomorphic expansions. The origin of this increase is the increase
in the degree of the polynomials inz that occur in the degeneracy equations relevant for
the boundaryB in the neighbourhood ofz = 0 (e.g. eqs. (3.11) and the resultant (3.12) for
Hk,r , etc).

The boundariesB found for the families of graphs in this paper exhibit some interesting
differences with respect to the (similarly noncompact) boundaries that we have previously
studied [13]; the latter shared three general properties: (i) a single curve onB passes through
z = 0, so that this point is a regular point onB as an algebraic curve; (ii) ifq ∈ B, then
Re(q) > 0, i.e.B includes support only for Re(q) > 0, or equivalently, for Re(z) > 0; and
(iii) if z ∈ B and Re(z) = 0, thenz = 0. In contrast, for the families studied in the present
paper, the homeomorphic expansions, which are all of the typeHEC, yield, in ther →∞
limit, respective boundariesB that differ in each of these aspects: (i) several branches of
the algebraic curveB pass through the pointz = 0, which is thus a singular (multiple)
point on this curve; (ii)B includes support for Re(q) < 0 or equivalently Re(z) < 0,
and (iii) B includes points with Re(z) = 0 other thanz = 0 itself. Some insight into
this can be gained by recalling the differences in the types of homeomorphic expansions of
starting graphs. Since in the original starting families such as(Kp)b +Gr andKp +Gr , it
was the connecting bonds linking the vertices of theKp subgraph with the vertices of the
Gr subgraph that gave rise to the noncompactness of the respective boundariesB, it makes
sense that homeomorphic expansions of these bonds would alter the nature of the boundaries
at z = 0. Since this change involves multiple branches ofB passing through this point at
various angles, as in equations (3.12), (5.34), (5.58) and (5.61), this also shows why this
type of homeomorphic expansion leads to boundaries that include support for Re(q) < 0,
but q 6= 0,∞, i.e. Re(z) < 0 but z 6= ∞, 0. In contrast, since the bonds within theGr and
Kp subgraphs, by themselves, are not directly responsible for the noncompactness ofB, it
is plausible that homeomorphic expansions of these bonds would not change the nature of
B at z = 0.

7. Boundary for Lk limit

Finally, we briefly discuss the boundaryB that results when one takes the limitLk of
equation (2.20), i.e.k → ∞ with r and p fixed, for the families studied in this paper.
We consider the nontrivial ranger > 2 since for r = 1, families typically degenerate
into tree graphs withB = ∅. For the families studied here for which we have obtained
the chromatic polynomials for generalk, includingHk,r , Ok,r , andUk,r , we find that this
boundary is simply the unit circle|q − 1| = 1. This is easily understood, since one can re-
express our formulae for chromatic polynomials in terms of polynomials ina = q−1 using
equations (1.6) and (1.7). From equation (1.7), it follows that the chromatic polynomials
are of the form of equation (1.2) witha as the quantity entering in terms raised to respective
powers proportional tok, together with possiblec0 terms involving(−1)k, and hence, as
discussed in our earlier work [12],B is determined by the condition|a| = 1. Hence,qc = 2
andB has no support for Re(q) < 0. Since the locus|q−1| = 1 is compact in theq-plane
and since our focus here is on the situation whereB(q) is noncompact in theq-plane,
passing throughz = 0, and the connection with the existence of large-q series forWred, the
Lk limit is not of primary interest here. We mention, however, thatB divides theq-plane
into two regions,(R1)Lk and (R2)Lk , which are the exterior and interior of the unit circle
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|q − 1| = 1 (the subscriptsLk are appended to distinguish these regions from those for the
Lr limit). It is straightforward to calculate theW -function in these two regions in theLk
limit of the various families. For example, for theHk,r family (for fixed r > 2),

W
([

lim
k→∞

Hk,r

]
, q
)
= q − 1 for q ∈ (R1)Lk (7.1)

and

|W
([

lim
k→∞

Hk,r

]
, q
)
| = 1 for q ∈ (R2)Lk . (7.2)

8. Conclusions

In this paper we have presented exact calculations of the zero-temperature partition function,
Z(G, q, T = 0), and ground-state degeneracy (per site),W({G}, q), for the q-state Potts
antiferromagnet on a number of families of graphs{G} for which the boundaryB of regions
of analyticity ofW in the complexq-plane is noncompact and has the properties that (i)
in the z = 1/q-plane, the pointz = 0 is a multiple point onB; (ii) B includes support for
Re(z) < 0; and (iii) B crosses the imaginaryz-axis away fromz = 0. Our results yield
insight into the conditions which preclude the existence of large-q Taylor series expansions
for the reduced functionWred = q−1W . This insight is valuable since large-q expansions,
where they exist, are of great utility in obtaining approximate values of the exponent of the
ground state entropy,W .
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