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Abstract. We present exact calculations of the zero-temperature partition function,
Z(G,q,T = 0), and ground-state degeneracy (per sit#®)({G}, q), for the g-state Potts
antiferromagnet on a number of families of gragdids} for which the boundary3 of regions

of analyticity of W in the complexg-plane is noncompact and has the properties that (i) in
the z = 1/g-plane, the point = 0 is a multiple point on3 and (ii) B includes support for
Re(q) < 0. These families are generated by the method of homeomorphic expansion. Our
results give further insight into the conditions for the validity of latgeeries expansions for

the reduced functioeq = ¢~ 1W.

1. Introduction

This paper continues our study of nonzero ground-state entrSgyG},q) # O, i.e.
ground-state degeneracy (per sitl®){G}, ¢g) > 1, whereSy = kgIn W, in g-state Potts
antiferromagnets [1, 2] on various lattices and, more generally, families of gtaphJ here
is an interesting connection with graph theory here, since the zero-temperature partition
function of the above-mentioneg-state Potts antiferromagnet on a graph satisfies
Z(G,q,T = 0)par = P(G, q), where P(G, q) is the chromatic polynomial expressing
the number of ways of colouring the vertices of the graphwith ¢ colours such that no
two adjacent vertices have the same colour [3-6]. Thus,

W([ lim G],q) — lim P(G, g)¥" (1.1)

n—o0

n—oo

wheren = v(G) is the number of vertices af. An example of a real substance exhibiting
nonzero ground-state entropy is ice [7, 8]. Just as complex analysis provides deeper insights
into real analysis in mathematics, the generalization feromZ., to ¢ € C yields a deeper
understanding of the behaviour 8f({G}, ¢) for physical (positive integraly. In general,
W({G}, ¢) is an analytic function in thg-plane except along a certain continuous locus of
points, which we denot# (and at possible isolated singularities which will not be relevant
here). In the limit as;1 — oo, the locusB forms by means of a coalescence of a subset

of the zeros ofP (G, ¢g) (called chromatic zeros of7) [9]. In a series of papers we have
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calculated and analyseW ({G}, ¢q) for a variety of families of graphs [11-16], both for
physical values ofy (via rigorous upper and lower bounds, lamgeeries calculations, and
Monte Carlo measurements) and for the generalization to complex valugs of

A basic question that one can ask about the Id8der the ¢z — oo limit of a) family
of graphs{G} is whether it extends only a finite distance from the origin of §hplane
or, instead, extends an infinite distance away from this origin (i.e. passes through the point
z = 0 in thez = 1/¢g-plane), and hence is noncompact. The importance of this question
for the statistical mechanics gfstate Potts antiferromagnets is that lagg@&aylor series
provide a powerful means of obtaining approximate values of the ground-state degeneracy
even for moderate values qf [17-19, 14, 15], but these exist if and only if the reduced
function W,ed({G}, 9) = ¢ *W({G}, ¢)t is analytic at ¥g = 0, which, in turn, is true
if and only if the nonanalytic boundar does not pass through= 0. Largeg series
calculations ofW,eq have been derived for regular lattices [17-19], but we noted [12] that
for the r — oo limit of the graphK» + C, the locusB, which is noncompact [10], no
such largey series exists. Herek, denotes the complement of the complete gr&pH.
It is clearly important to understand better the differences between the behaviour of Potts
antiferromagnets on families of graphs that yiéL«({G}, ¢) functions analytic at = 0
and those that do not, i.e. those that yield noncompactffopassing througla = 0 [13].
In this paper, we carry out such a study for families of graphs which are homeomorphic
expansions of the following type. We start with families of the faik),), + G,, whereG,
is a given graph family withr vertices,b signifies the removal of certain bonds in thg
subgraph, an@ + H is the ‘join’ of the graphsG and H§. We then perfornhomeomorphic
expansionof the bondsconnectingthe K, andG, subgraphs. This family is categorized as
being of type HEC. An interesting feature of the families analysed here is that, in contrast
to those that we have previously studied, they yield B¢ivhich are boundaries of regions
of analyticity of W) that have support for Rg) < 0 and for which the point = 0 is a
multiple point on the algebraic curyg in the technical terminology of algebraic geometry
[20], i.e. a point where several branches of this curve cross each other. For basic definitions
on homeomorphic classes of graphs, see [6]; some recent work on homeomorphism classes
in a different direction than ours is [22].

A general form for the chromatic polynomial of anvertex graphG is

Na

P(G,q) = colq) + Y ¢;(q)a;(9)"" (1.2)
j=1

wherec;(g) anda;(g) are certain functions af. Here theu;(g) andc;.o(g) are independent
of n, while ¢o(g) may containn-dependent terms, such &s1)”, but does not grow with
n like (constant’. A terma,(q) is defined as ‘leading’ if it dominates the — oo limit
of P(G, ¢); in particular, if N, > 2, then it satisfiega,(¢)| > 1 and|as(q)| > |a;(g)| for
j # ¢, so that|W| = |a,|%. The locusB occurs where there is a nonanalytic changéVin
as the leading terms, in equation (1.2) changes.

T This reduced function is a natural object to define since an obvious upper bouRdanr;) describing the
colouring of ann-vertex graph withg colours isP(G, q) < ¢", and hencéW ({G}, q) < g; this guarantees that
lim, - Wred({G}, q) is a finite quantity (even if it is sometimes nonanalytic at this point). The largeries

take their simplest form as series in the expansion variabie 1/(¢ — 1) for the equivalent reduced function
W{GY, q) = ¢ XA — ¢~ H~2/2W({G}, q), whereA is the coordination number of the lattice.

1 The complete graplk, onn vertices is defined as the graph where each of these vertices is connected to all of
the othem — 1 vertices by bonds. The complemet, of K, is the graph with: vertices and no bonds.

§ The ‘join’ of two graphsG and H is obtained by adding bonds connecting each of the verticés tof those of

H. This was denoted x H in [13]; here we use the more common notation for this object in the mathematical
literature, namelyG + H.



Ground-state degeneracy of Potts antiferromagnets 9643

Since for the families of graphs studied here, the boundaig noncompact in the
g-plane, it is often more convenient to describe the boundary in the complaxy-planes,
where, as above, = 1/¢, and

1 z
Y= g—1 1-z2
The variabley is commonly used in large-series expansions. For the families considered
here B is actually compact in the- andz-planes. We define polar coordinates as

(1.3)

and
y = p€? (1.5)
and the function
Dt = PG _ 23N yi =Sy (“T)e ae
q(¢—1 =0 = s |

wherea = g — 1= 1/y and P(Cy, q) is the chromatic polynomial for the circuit (cyclic)
graphC; with k vertices,

P(Ci, q) = a* + (=D*a. (1.7)
We shall also use a standard notation from combinatorics,
q L
q" = pl( ) =[]@-». (1.8)
qa—-pr s=0

The organization of this paper is as follows. In section 2 we construct several general
multiparameter homeomorphic classes of families of graphs that, in a certain limit, yield
noncompact boundarigs(g). In sections 3-5 we give exact calculations of the respective
boundariesB for three such families. These exhibit features going beyond those that we
found in our earlier work in three main ways: (i) the point= 0 can be a multiple
point; (ii) B includes support for Rg) < 0, and (iii) it is no longer true in general that
Re(q) =0« g =0 for g € B. A general discussion of our findings is given in section 6,
and our conclusions are presented in the final section.

2. Homeomorphic classes of HEC type

We can construct a large variety of families of graphs with noncompact bound#@es
of regions where the respectiW-functions are analytic by performing homeomorphic
expansions of the basic family constructed and analysed before [13]:

(Kp)b + Gr (21)

where, as before) denotes the removal df bonds connecting a vertex in the X,
subgraph to the other vertices &i,. Since each vertex € K, has degreeA = p — 1, b

is bounded above according ko< p — 1. We have shown earlier that (i) the lochsfor

lim,- [(K,)» + G,] is noncompact in theg-plane, passing through= 1/¢g = 0 [13] and

(i) the analogous locus for the— oo limit of homeomorphic expansions of this family has

the same noncompactness property. To construct specific homeomorphic expansions, select
a vertexv; in the K, subgraph and perform homeomorphic expansion on each of the bonds
connecting this vertex with the vertices @, by insertingk; — 2 additional degree-two
vertices on each of these bonds, where> 3. Then continue this process with a second
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Figure 1. lllustrations of families of graphs considered in the texta) (Hy, =
HECkl—Z,kQ—Z(?2 +?r), with r = 4 andk; = 3, k, = 4, whencek = k1 +k, — 1 = 6;
(b) Oxy,r = HECiy—20,0(K3 + T;) with k1 = 3 andr = 4; (¢) Ox,,r = HECyy—20(K2 + )
with k&1 = 3 andr = 4; (d) Uy, = HECy;,—2ky—2(K2+T)) with k1 = kp = k =3 andr = 4.
Here, K, is the complete graph witp vertices andr; is the tree graph witlr vertices.

vertexv, € K,, insertingk, — 2 additional degree-two vertices on each of bonds connecting
v With the vertices ofG,, and so forth for the other vertices ki, (including the vertex

from which theb bonds were removed. We denote the resultant homeomorphic expansion
as

HECy, 21,-2...k,—2[(Kp)b) + G/]. (2.2)
The labelling is chosen so that, counting the two vertices on the original bond connecting to
v; € K, together with thek; — 2 inserted vertices, there is a total/igfvertices in what was
originally this single bond. Some illustrative examples of this and other types of families
to be discussed are shown in figure 1.

Another starting family with a noncompa8tin the r — oo limit is
(Kp)py: () + Gr (2.3)
where the subscriph} refers to the removal of multiple bonds from a set of non-adjacent
vertices{v} of the K, subgraph. Performing the HEC-type homeomorphic expansion as
above leads to the family
HECy 24,2, k,~2l (Kp)p): () + G/ (2.4)

A special case of equation (2.4) applies if in the starting family one removes all of the
bonds connecting vertices in thi€, subgraph to each other, so that this starting family is

K, +G,. (2.5)
The HEC-type homeomorphic expansion of this family is thus
HECy,_24,-2..k,—2(K, + G)). (2.6)

In this case one clearly obtains the same homeomorphically expanded family if one permutes
the choices ok;:

HECy, 21,2 kp—z(?p +G,) = HEC(t)—2,7(ky) -2 n(k,,)—z(?p +G,) (2.7)
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wherer is an element of the permutation group probjects,S,. The number of vertices
in the homeomorphic classes of families (2.2), (2.4), and (2.6) is the same, namely

..........

14
=v(HECy 2k,-2..k,—2[Kp, +G,])=p+ r(l —-2p+ ij) (2.8)
=

Note that forp = 2, since one can only remove= 1 bond in theK subgraph, thereby
obtaining(K2),—1 = K>, it follows also that

HECu_24,-2[(K2)p—1 + G,] = HECyy—24,-2[K2+ G,]. (2.9)
For the cas&s, = K, the chromatic number is
X(HECi,_25-2...k,—2lKp + K:]) = 2. (2.10)
For G, = T,, for the cases > 2 of interest here,
X(HECk—24p-2...k,—2[K, + T,]) =3 (2.11)

so that forr > 2,
P(HECi, 2jp-2...k,—2lKp + T,].q = 2) = 0. (2.12)

.....

For ther = 1 case, this family degenerates to a tree graph,

P
HECy,_24,-2 kp,z[Ep +TN) =T, wherev, =1+ Z(kj -1 (2.13)

=1

with chromatic polynomialP(7,,, ¢) = q¢(¢ — 1)"~! and chromatic numbex = 2.
A general result for the chromatic polynomial in the case 2, G, = T, is

p
P(HECi 24,-2...k,2lKp + T2l @) = q(q = D) | | Doty 1. (2.14)
j=1

Since the respective indices;2- 1 of each of theDy, ; in equation (2.14) are odd and
since

Dy odd = (¢ — 2) x pol(g) (2.15)
where polg) is a polynomial ing of degreek — 3, it follows that

P(HECi,—2ky-2...k,—2Kp + T2l. @) = q(qg — 1)(g — 2)” x pol(g) (2.16)
where pol(g) is a polynomial of degree Z;’Zl(kj - 2).

Since the number of vertices= v is a linear function ofp, r, andky, ..., k,, there
are several ways of producing the limit— oo (L denotes limit):

L,:p— o0 with r, k1, ..., k, fixed (2.17)

L, :r— o0 with p, kq, ..., k, fixed (2.18)

Ly, i kj — oo with p, r k1, ..., kj—1, kj31, ..., k, fixed (2.19)

and, for the case where all of titg's are the same, i.é; = kepVj (Where the subscript cb
denotes ‘connecting bond’),

Ly i kep — 00 with p, r fixed. (2.20)

As discussed before [13], the limit, is not of much interest from the viewpoint of either
statistical mechanics or graph theory, since for any given g@ptand for any given
(finite) value ofq € Z,., asp becomes sufficiently large, one will not be able to colour the
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graph(K,), + G, or homeomorphic expansions thereof, and the chromatic polynomial will
vanish. The limitsL;, and L, are also not of primary interest here since they generically
yield compact boundarie8, as will be illustrated below. We shall therefore concentrate on
the limit L,. The lowest choice op that yields a noncompact boundafyg) is p = 2.

For generalp and G,, we remark on two special types of HEC homeomorphic
expansions. A minimal case is one in which the above homeomorphic expansion is carried
out only on the bonds connecting a single vertex, taken to,beith no loss of generality,
in K, to vertices inG,, SOk, =kz=--- =k, = 2:

HECy,20..0(K, + G,). (2.21)

A particularly symmetric case is the one in which the homeomorphic expansions are the
same on all of the connecting bonds:

HECkl—Z,kZ—Z k,,—Z(Ep + G,) withk1 =k =--- = kp = kcp. (222)

.....

In this case, the right-hand side of equation (2.8) reduces=op + r + pr(kep — 2). We
proceed to give detailed analyses of some special families of homeomorphic expansions.

3. Class of fami'iESHECkl_zykz_g(Ez + Er)

The family H ECy, 4, 2(K2 + K,) has the special property that the graphs of this family
only depend on the sum @&f andk,, not on each of these parameters individually:

HECi_24,-2(K2+ K,) = HECy_21,—2(K2 + K,) € ki + ko = ki + kb. (3.1)
To incorporate this symmetry, we define
Hy, = HEC/(_3(E2 + ?r) = HECkl—Z,kg—Z(EZ + E,) wherek = ky + k, — 1. (3.2)

As will be evident in our explicit results below, the fact that this family has a noncompact
W boundaryB(g) in the L, limit can be understood to follow from its construction as a
homeomorphic expansion of the starting familf,),—1 + G, = K, + G, which (as was
shown previously [13]) has a noncompdihere,G, = K,). The noncompactness of the
boundaryBB obviously implies that in the., limit, the chromatic zeros have unbounded
magnitudes (in they-plane), since3 arises via the coalescence of these chromatic zeros
in this limit [13]f. We note that the cask, = k, = 2, i.e. k = 3 is a special case of
the graphs with noncompafi(q) that we have constructed and studied before [13], so we
concentrate on the homeomorphic expansibns3 here. The number of vertices is given
by the p = 2 special case of equation (2.8) with (3.2), namelyl; ,) = (k — 2)r + 2. For
arbitraryk > 2 andr > 1, Hy, is bipartite, i.e.

x(Hyr) = 2. (3-3)

Forr > 2, the girth isg(H; ,) = 2k — 2. Indeed, all (non self-intersecting) closed paths are
of this length. Forr = 1 andr = 2, the family degenerates according to

H1 =Ty (3.4)

1 For a family of graphsGy ., rather than analysing the continuous lodBisresulting from theL, limit in

equation (2.18) or thd., in equation (2.20), one may formulate a different problem: {igf}; , denote the
set of chromatic zeros o6y, and consider the union of this set, summed over bothnd k, denoted
{godvir = Y021 > reolqolk,r. This problem has been considered for the fandly, = H;, by A Sokal,
who finds (private communication) that the image of this union is dense in the vicinity of the origin; = 0.

We thank Professor Sokal for this communication
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and
Hio=Cxy_» (3.5)

where, as defined abové&, and C, are, respectively, the tree and circuit graphs with
vertices. Hence, we shall take> 3.
By use of the deletion-contraction theoreme obtain the recursion relation

P(Hir,q) = DyP(Hi,-1,9) + (=) q[(g = DDy (3.6)
which we solve to get the chromatic polynomial
P(Hy,,q) = q(q — D[Da—2(Dy) "% = (¢ = D(De-0)*[(DD)" 2 = {(g = DDsa) 1.

(3.7
This has the form of equation (1.2) witk, = 2,
a1 = Dy (3.8)
and
az =(q — D) Dy-1. (3.9)

In the limit L, of equation (2.18), the nonanalytic boundary lo@iss determined as the
solution of the degeneracy of magnitudes of the leading terms

lai| = laz|. (3.10)

To determineB, we multiply equation (3.10) bylg(¢ — 1)| to obtain |P(Cy, q)| =
(g — D) P(Cy_1,q)| (the resultant spurious solutions thereby introduceq at 0, 1, i.e.
y = —1, oo, are understood to be ignored in the following discussion). Dividingddy
yields

11+ D =114+ D)2 .11

Sincey = 0 is a solution of equation (3.11% is noncompact in thg-plane, passing through
z=1/q = 0, as noted above (equivalently, equation (3.10) satisfies the condition given in
the theorem of section 4 of [13], that guarantees that the solution Bésisioncompact in
the g-plane). (In contrast, for fixed, B is compact in the- or y-plane.)

Furthermore, we find that (i) (2 — 2) curves onB, consisting of(k — 2) complex-
conjugate (c.c.) pairs, intersectat y = 0; (ii) these curves approach the point y = 0
at the angles

j=0,... k-3 (3.12)

Thus, if and only ifk is odd, these angles includer/2, i.e. a branch oB crosses the point
z =y = 0 vertically. To prove these results, we write (3.11) in terms of polar coordinates
using equation (1.5):

P 21" 2 (0% — 1) + 2(=1)"{p cosfk — 1)B] + cosfk — 2)B]}] = 0. (3.13)

As p — 0, so thatz — y (whenceg — ¢), the solution is given by co&f — 2)8] = 0,
which yields the results (i) and (ii). In the terminology of algebraic geometry [20], the point
z =y = 0 is a singular (multiple) point on the algebraic cui§eof index k — 2.

T We recall the statement of the addition-contraction theorem [4—6]Glée a graph, and let andv’ be two
nonadjacent vertices ir. Form (i) the graphGaqq in which one adds a bond connectingand v’, and (i) the
graph Geontr in which one identifiess andv’. Then the chromatic polynomial for colouring with ¢ colours,
P(G, q), satisfiesP(G, q) = P(Gadd ¢) + P(Gcontr, q¢). The reverse process of bond deletion, leading to the
same equation, is known as the deletion-contraction theorem.
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1.0
@
05 r §
N
E 0.0 r o §
05 r §
1-0 L L L L L
1.0 0.5 0.0 0.5 1.0 15

Re(z)

Figure 2. BoundaryB in the z = 1/g-plane for lim_, Hi, with k = (a) 4; (b) 5; (c) 6.
Chromatic zeros fot; , with (k, r) equal to &) (4, 30); (b) (5, 18); (c) (6, 10) are shown for
comparison.

As a further result, we find that (iii) ik is odd, B crosses the reaj}-axis once, at a
value ¢, that increases monotonically fr0|§1f0r k = 3, with lim_ o g, = 2; (iv) if k is
even,B never crosses the reataxis, sog. is not defined. To show these results, we first
setB = 0 in equation (3.13), which becomes

k—3

(0 + 1)2[,3/«2 +2(-Df Z(—pf} =0. (3.14)
s=0

For oddk, this has a single real, positive solution for which decreases monotonically

from p = 2 for k = 3, approaching = 1 ask — oo. For evenk, equation (3.14) has no

(real) solution forp. For 8 = &, equation (3.13) yields

k-3
(o — 1)2[pk—2 + 22 p‘] =0. (3.15)
s=0

Aside from the rootp = 1, i.e.y = —1, which is spurious as noted above, equation (3.15)
has no real roots. The result fgrfollows directly.

The curves comprisingg divide thez-(equivalently,y- or ¢-) plane intok — 1 regions.
For evenk = 2¢ and oddk = 2¢ + 1, these includg?¢ — 1) c.c. pairs of regions. In
the g-plane, B consists ofk — 2 disjoint curves (a line fok = 3); each curve extends
inward from complex infinity, turns around and heads back out to complex infinity along
a different direction. Fok = 3, B is a circle in both they- and z-planes, given by the
equationy—1| = 1, i.e.|z—3| = 1. Fork = 4,5, 6 we show our calculations & in thez-
planes in figure 2. The corresponding plots in $hplane look more like (slightly distorted)

cloverleafs, reflecting the simplicity of the degeneracy equation (3.11) in-treiable. As
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Figure 2. (Continued)

an example, we show the cake= 6 in figure 3 (additional figures in thg-plane are given
in [21]). As is clear from figure 2, fok > 4, B has support for R&) < 0 (equivalent to
Re(z) < 0). Note that Ré¢z) = 0 does not, in general, imply that= 0, since fork > 4,

9649
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2.0

(©

1.0

0.0 r

Im(y)

10

2.0
2.0 1.0 0.0 1.0 2.0 3.0

Re(y)

Figure 3. BoundaryB in the y = 1/(¢q — 1)-plane for lim_,  Hj, with k = 6. Chromatic
zeros forH; , with r = 10 are shown for comparison.

B intersects the imaginary-axis away from the origin, e.g. at= +z;, where
z; = i4/2/5 = 0.632 456i fork =4 (3.16)
z; = i4/8/7 = 1.069 04i fork =5 (3.17)
(i/3)[10 F v/82]? = 0.323 971 1.455 08i fork = 6. (3.18)

Zi

In the y-plane, the interceptg = +ip; of B with the imaginaryy-axis (aside fromy = 0)
are given, for evert = 2¢, by

pi V(P - 2= =0 (3.19)

and, for oddk = 2¢ + 1, by equation (3.19) multiplied by. Solving these equations for
generalk, we find that (withk > 3) (i) for k = (0 or 1) mod 4,p; is nonzero, decreasing
monotonically fromy/2 for k = 4, 5 toward 1 ag — oo; (ii) for k = (2 or 3) mod 4, there
is no nonzero interceps;. Although 5 extends to Réz) < O (equivalently, Rég) < 0), it
never includes support for negative reabr q.

In figure 2 we also show illustrative chromatic zeros f@ay Xk = 4,r = 30 (= n = 62),
(b) k =5r =18 (= n =256),and ¢) k = 6,r = 10 (= n = 42). Aside from the
ever-present zeros gt = 0,1 (z = oo, 1), the chromatic zeros generally lie close to the
asymptotic curves comprising onto which they coalesce d@s— oo. For a given set
of (finite) k andr, the moduli of the zeros are bounded, and hence they avoid the points
z =y = 0, approaching these only as— oo for a givenk.

As before [12, 13], we lefR; denote the region including the positive reabxis for
g > q.. Fork even, this includes the entire replaxis. For oddk, we denote the region
containing the rest of the reglaxis asRz ;o4q; from our statement above, it follows that
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there is noR, phase fork even. Forg € R;, we calculate

_ [az(g)]Y*—2 if k is odd
W(| lim Hy,|,q;9 € R1) = 3.20
([im, A |- i € Ra) :[al(q)]l/(k_z) triseven. 20

As discussed in [12], in regions other th#&j, there is no canonical choice of phase in
taking the ¥Ynth root in equation (1.1), so that one can only determiwg{G}, ¢)|. We
find

‘W([ran;O Hk,,], q)‘ — @Y ?  for k odd andg € Roodd (3.21)

’W<[r"j;o Hk’r]’ q)‘ = la(q)|*7? for k odd andg & R1, Rz kodd
and fork even andy ¢ R;. (3.22)

On B, |W| is continuous but nonanalytic.

4. Class of familiesH ECy,_200(K3 + K,)

When p > 3 in the homeomorphic class of families (2.2) or (2.6) with= K, the graphs

and their chromatic polynomials depend on the individual values oktheot just on the
sum, as in equation (3.1). A simple homeomorphic class of families of this type is the
special case of equation (2.21) fpr= 3 andG, = K,, namely

O = HECi,—200(K3+ K,) ki =k. (4.1)
We havev(®;,) =r(k—1)+ 3 and
x(O,) =2 (4.2)

For our present purposes, it will suffice to study the fanéily,.. We calculate the chromatic
polynomial
P©a,,q) = (q =2 *P(©32.9) — q(q — D(Da)’[(q — 27 ~* = (Da) 77

-4 -D*¢ -2 (¢ -2 ?=(g-D"7

-4 —1@q-@* 4 +5%(¢ -2~ (¢* -4 +5"7] (43

where
P(®32,9) =q(q — D[(q —1)Ds — (¢ — 2)Ds]. (4.4)
This has the form of equation (1.2) witk, = 4 and
a1y =Ds=qg*>—3¢+3 (4.5)
az=q°—4q+5 (4.6)
a3=(q—1(g -2 (4.7)
and
as = (q — 2)2. (4.8)

The nonanalytic boundarg for the limit asr — oo is shown in figure 4. As with
the H;, family discussed above, and the other families to be discussed below, one sees the
important feature thaB includes support for Re) < 0 or equivalently R¢g) < 0. The
boundary divides the-(or equivalentlyy- or ¢-) plane into six different regions: (iR,
including the interval O< z < % on the positive reat-axis; (ii) Rz, including the union of
the intervalsz > % andz < 0; (iii) a c.c. pair of regionsks and R3 lying just above and
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Figure 4. Boundary2B in the z = 1/g-plane for lim_.o ©3,. Chromatic zeros fo®3, with
r = 16 are shown for comparison.

below R, in the z-plane; and (iv) a second pair of c.c. regiaRg and R} located such that
R4 lies above and adjacent ®; (hence betwee®s and R») and R;; lies belowR3. In the
regionsR; and Ry, a1 anda, are dominant, respectively, whilg is dominant in regions
R; and R} for j = 3 andj = 4, respectively. We have

w([ lim @k,,], q) —(@)Y?  forgeR (4.9)
A,

‘W([rILrT;o ok] q)‘ — w2 forgeRs (4.10)
and

‘W([ran;Q @k,,.], q)‘ =la;|">  forqe R, R, j=34 (4.11)

The region boundaries between regiaRsand R; are the solutions of the respective
degeneracy equatidn;| = |a;| wherea; anda; are leading terms. Dividing these equations
by |¢|? and re-expressing them in termszab get the corresponding degeneracy equations in
thez-plane, one hagi;| = |a;| with @ = 1—3z+372, dp = 1-4z+572, a3 = (1-2)(1—22),
andas = (1 — 2z)2. Clearly, each(i, j) pair of the degeneracy equatiofis| = |d;| in the
z-plane has a solution at= 0, which shows that, in accordance with the condition of [13],
B is noncompact in theg-plane, passing through the point= 0. Thus, as is evident in
figure 4, all of the regions are contiguouszat 0, where six curves (i.e. three branches)
of B meet in a multiple point. For small = |z|, the degeneracy equation for the part of
B separatingk; and Rs has the form 22(1 — 2 cog ) 4+ O(¢3) = 0, so that this boundary
crosses the poing = 0 at the angles given by cés= 1/1/2, i.e.
b4

" (4.12)

ORy. Ry Ory.R; =
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(The other solution, cas= —1/+/2 is not relevant because in this regian,andas are not
leading terms.) Similarly, for small, the degeneracy equation for the parttbEeparating
the regionsR; and R, is ¢(3¢ — 2cos9) = 0 so that ag — 0, this boundary crosses the
point z = 0 at the angles given by cés=0, i.e.
4

ORa, R Ors.R; = :l:E. (4.13)
The same type of reasoning applied to ®Rg R4 and R», R; boundaries shows that they
crossz = 0 at the angles

37
9R2,R47 0]?2.[3‘*1 = :l:T (4.14)
Concerning the boundary separating regiats and R,, we observe that the relevant

degeneracy equation
B(R1— Rp) 1 11— 3z + 32| = |1 — 4z + 57 (4.15)

has the solutiory = % as its only solution other than = 0 wherea; anda, are leading
terms. Henceg, = 2 for this family. Concerning the two c.c. pairs of multiple points, we
note that the multiple poing, 3 4 where regionsR,, R3, and R4 are contiguous, and its c.c.,
are
% _ a=1/2 Fin/6 _ } L

22,34, 2234 3712t > + 2\/:_3. (4.16)
Hence this c.c. pair lies on the unit circle] = 1 or equivalentlylg — 1| = 1 in the
respectivey- andg-planes:

V2,34, V354 = €773 (4.17)
4234, 4534 = 3276, (4.18)

A corresponding analysis can be given for the multiple peint; where regionsRi, Ry,
and R3 are contiguous.

5. Class of fam”iESHECkl_g,kz_g(Ez +T,)

lllustrative graphs of the family
HEC),—24,-2(K2+ T}) (5.1)

with (kq, k2) = (3, 2) and (k1, ko) = (3, 3) are shown in figures tf and @), respectively.
From the general equation (2.8) with. = 7, and p = 2, we have

V(HECk, 24, 2(K2+ T,)) = 2+ r(ka + k2 — 3). (5.2)

The special casg, = k, = 2 is the familyK, + T, = (K2),—1 + T, which we analysed
in detail earlier [13] so we concentrate on the homeomorphic expansions of this starting
family here, i.e.k; > 3 and/ork, > 3. In order to calculate the chromatic polynomial for
the graphs in this homeomorphic class of families, we shall utilize a generating function
method as we did in [16] for infinitely long, finite-width strip graphs of various lattices.
The generating functiofr is a function of a symbolic variable and yields the chromatic
polynomialsP(HECkl,g,kz,z(fz + T,), g) via the Taylor series expansion around= 0
according to
F(HECy-—2k,—2(K2+T,),q,x) = P(HECy 24, 2(K2+T), ¢)x". (5.3)

r=1
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The summation starts at= 1 since this is the minimum value ofin this family. As in
our earlier work [16], we find thall is a rational function ok and, separately, af, of the
form

N(HECy 24,-2(K2+T,), q, x)
DHECk,—24,—2(K2+T;),q, x)

T(HECy 24,-2(K2+T,),q,x) = (5.4)
with
jmax
NHECy,-24,2(K2+T,),q,x) =x Z Aj(@)x’ (5.5)
j=0
(so that deg(NV) = jmax+ 1; the prefactor ofc reflects the fact that the minimum value of
ris 1) and
_ Ja )
D(HECi,24,2(K2+T,).q.x) =1+ Y _ bj(g)x/ (5.6)
i=1
where jmax and ji,., depend on the specific family, the andb; are polynomials iy, and
their dependence oky andk, is left implicit. (This notation follows that of [16] except
that in equation (5.5), we usé rather tharu to avoid confusion with the; functions in
equation (1.2).) A general formula fotg is

Ao = P(Tiyst-1,9) = q(g — DF+he2, (5.7)

The otherA;’s andb; polynomials will be given below for specific families.
For the starting familyHECoo(K2+ T;) = K2 + T, = (K2)p—1 + T, and indeed its
generalization K ,); + 7, one has [13]

P(Kpp+Tr.9) =q" (g —p -1 +blg—p) 7 (5.8)

(recall the notation in equation (1.8)). The equivalent representation in terms of a generating
function is obtained by noting that equation (5.8) has the form of equation (1.2)yth0
andN, =2, i.e.

P((Kp)p + T, q) = c1(ar)” + c2(az)’ (5.9
with
aa=q—-p-1 a=q—p (5.10)
q(erl)
=2 (5.11)
g—p-1
and
b (p+1
o= a4, (5.12)
(g —p)

We find that the chromatic polynomi@((K,), + T}, ¢) is given as the coefficient of" in
the Taylor series expansion about= 0 of the generating function
x(Ag+ A1x)

DK+ T g50) = o (5.13)

where
)uj = Clj ] = 1, 2 (514)
Ag = aic1 + ascr (5.15)
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and
A1 = —aiax(c1 + ¢2). (5.16)

For a general graply, this type of relation between the form for the chromatic polynomial
(5.9) and the generating function (5.13) has a straightforward generalization to the case
where N, > 3. In the present casez),—1 + T, = HECoo(K2 + T,), we find, for the

upper limits on the sums iN/ (x) andD(x) the valuesjmax = 1 and j/,, = 2.

5.1 Fam”ieSHECkl_z’o(?z +T)

We first consider the simplest homeomorphic expansion of By on the starting family
K,+T,, in which one performs this expansion only on the bonds connecting one of the two
vertices in thek , subgraph with the vertices of te subgraph. With no loss of generality,

we choose this vertex ik, to be vy, so thatk; — 2 = 0 andk; — 2 > 1. For brevity of
notation, define

O, = HECy,_20(K,+ T,) ki=k (5.17)

with v(Oy,) = 2+ r(k — 1). When referring to the collection of the graphs of this family
for variousr, we denote it a§O,}. The casek = 2 is just the original starting family,
K2+ T,. For the family O, , with k£ > 3 we find that

Jmax = 2 Jmax =3 (5.18)
For generak > 3, the denominator of the generating function can be written as
D0k}, ¢, %) =[1 = (¢ =2 Dix][L — (¢ — 3 Dix — (g — D(g — 2) Dy-1D4x7]

= (1= 220)(L = Apx) (1 — Ayux) (5.19)
where
Mpm = 3[(q — 3D £[{(q — 3D} + 4(q — 1)(q — 2) D1 D] Y] (5.20)
and
ro = (q —2)Dy. (5.21)

The coefficient functions i\ are Ag, given by the special case of equation (5.7), namely
Ao=gq(g — D" and

A1 =—q(q—DD[(29 —5) (g — D"t — (g —[gDy —2(-D!]] (5.22)
Az = —q%(q — D*(q — 2)Dy_1 DL (5.23)

(In deriving the expression fot;, we have used the identit®y,_; = [¢g Dy — 2(—1)*]1Dy.)
We calculate

W({Ox}, @) = (hma)*P forg € Ry (5.24)
and
|W({ Ok}, )| = |maxd & forg e Rj # Ry (5.25)

where Amax(¢q) denotes the leading in equation (5.19) in the respective regions of the
g-plane. For a general familyG} of graphs with a generating function

N(x) _

F'({Gl.q.x) = Do)

> PG g)x (5.26)
J=J
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with
Jrmax

D) = [J@=nx) (5.27)
Jj'=1

the boundarys3 in the limit r — oo is given (see equation (4.16) of the first paper in [16])
as solution locus of the equation expressing the degeneracy in magnitude of two leading
terms in equation (5.27), whel® switches form nonanalytically,

[Amax(¢)] = [Amax (@)]. (5.28)

As an illustration, we consider the lowest homeomorphic expangien,3, for which
equations (5.20) and (5.21) read

Mpm = 3(q — (g =3 £ (¢° — 2q +5)"?] (5.29)
hy=(q— 27> (5.30)

Let us now writerq,, A1, anda, in terms of the variable = 1/4 in polar coordinates, as
given by equation (1.4) and Taylor-expand the resulting expressions for smak obtain
for the magnitudes squared of thés

|A1pl? = 1 — 4¢ cosh + 2¢2(cog20) + 2) + O(¢®) (5.31)
|hnl? = ¢% 4+ 0 (5.32)
IA22 = 1 — 4z cosh + 422 + O(Z3). (5.33)

Thus, for small values ofz|, the boundary3 is given by the equatiofi,| = ||, which
yields ¢2cog20) + O(¢®) = 0 as¢ — 0. Hence,B is noncompact in the-plane and
crosses the origin of the-plane at angles such that ¢@8) = 0, i.e.

9=%+n% 0<n<3 (5.34)

This is evident in figure 5. From equation (1.3), it follows that> z asz — 0, so that
these angles are the same in t¥plane. The boundarys divides thez-plane into four
regions: (i) Ry, including the interval O< z < % on the realz-axis; (ii) R», including the
intervals—oo <z <0 and% < z < o0 on the realz-axis; and (iii) the complex-conjugate
pair of regionsRs and R} lying roughly above and below = 0.

We find
W([ran;O 03,,], q) = ()2 forgeR (5.35)
|W([Ji_)ngo 03,,], q)| = A,l2 forgeR, (5.36)
and
|W([rILngo 03,,],q)| = 32/2  forq € Rs, R} (5.37)

A portion of 5 crosses the positive real axisat z. = % so thatg. = 3 for lim,_., O3,

Along this portion of the boundary1, | becomes degenerate with, |, although the former
never dominates in magnitude over the latter. This portion of the boundary ends in two c.c.
multiple points. Note that

W([rleoo 03,,], q) —0 atg=2 (5.38)

consistent with equations (2.11) and (2.12).
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Figure 5. BoundaryB in the z = 1/g-plane for lim._, o, Ok, with kK = 3. Chromatic zeros for
Ok.r (k,r) = (3,29) are shown for comparison.

5.2. FamiliesH ECy, 24, 2(K 2 + T,) with ky = k

We next consider the case of symmetric homeomorphic expansion of the bonds from the
two vertices of theK, subgraph, i.ek; = k, = k. For brevity of notation, we denote

Urr = HECy 21, 2(K2+T,)  ki=ko=k (5.39)

with v(Uy,,) = 2+ r(2k — 3). When referring to the collection of the graphs of this family
for variousr, we denote it agU;}.
For the family Uy, we find that

Jmax =3 jr/nax =4 (5.40)
The denominator of the generating function can be written as
D({Ui}. 4. %) = [1 (¢ — DDfx — (¢ — 1*D}_, Dix?]

x[1 = Di(Dit1 — D)x — (¢ — 1)*Dy_1DPx?]. (5.41)

Observe that each factor efin D({U,}, g, x) occurs with at least one accompanying factor
of D;. We have

DUk}, q,x) = (1 = A1px)(A = Ay x)(1 — A2px) (1 — Ao X) (5.42)
where
D
Mpm = 7"[<q - 2D £[[(g —DDi]* + 4(qg — D3(Dx-1)?]?]  (5.43)
and

D
Aopm = ?k[(Dk+l — Dy) £ [(Dyy1 — Di)* + 4g — 12 D1 Di]Y]. (5.44)
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For the polynomials in the numeratdr(x), equation (5.7) givesio = ¢(¢ — 1)%*~2 and
we find

A1 =q(q — D[(Da-1)* — (¢ — D*°[(g — 3Dy + Dira] Dy (5.45)
Az = —q(q — 1*Di1Dg°Df — q(q + 2)(—1)*Di + 24

+q(q — (g — D ?Di + (g — (=D (g — D2 + 1] (5.46)
As=—q%(q - 1)*D}_,D}. (5.47)

We calculate

WU @) = Dmad @]V forg e Ry (5.48)
and

IW{UY @)l = mad @Y ®™2 forg e R # Ry (5.49)

where Amax(q) refers to the respective dominantin the given region. The boundaidy

is given, as before, by the solution locus of equation (5.28). We show this boundary in
figure 6@), together with illustrative chromatic zeros for the case 19. From the property
(2.15), it follows that ther’s are degenerate at zero when= 2,

Mpm(g =2) =Aopm(g=2)=0 for k odd (5.50)
so thatB passes through the poigt= 2 if k is odd, and, furthermore,

W([rango Uk_,], g = 2) —0  fork odd (5.51)

This is consistent with the facts that{U}) = 3 and P (U, ¢ = 2) = 0 as special cases
of equations (2.11) and (2.12).

We next give some explicit results for the lowest two cages,3 andk = 4. For the
family U—3, equations (5.43) and (5.44) yield

Mpmia=3 = 3(q — 2[(q — 22 £ (¢* — 4¢° + 124* — 20g + 12)"7] (5.52)
dopmi=s = 3(q — 2)[(q* — 4q +5) £ (¢* — 4¢° + 104” — 20g + 17)"/?]. (5.53)

To investigate the boundary in the vicinity ef= 0, we divide the degeneracy equations
by |¢|® and express the results in terms pf= 1/¢ in polar coordinates, as given by
equation (1.4). We then Taylor-expand these equations for gmallz|. This yields
|M1pa=al? = 4 — 24 cosh + 4¢2[8 cog20) + 9] — 8:3[12 co + cog(39)] + O (5.54)
|h2pazal? = 4 — 24 cosh + 4¢?[8 cog2) + 9] — 16£%[6 cosd + cog(30)] + O(¢*) (5.55)
|Amir=sl® = 4% + O(®) (5.56)
Aomk=3|® = 42 + O(LY). (5.57)
Thus, in the vicinity ofz = 0 the boundary5 is given by the equatiofhy,.k=3| = |A2p:k=3l,

which yields cog30) = 0 for ¢ # 0. Hence, six curves off (forming three branches) cross
the pointz = 0 (and hence also the point= 0), at angles

9:%%% 0<n<5. (5.58)

The boundary3 divides thez-plane into six regions. As one traverses a circle around the
origin, z = 0, starting with a small positive realvalue, firstiy,. =3 is dominant, and
then the dominant’s alternate betweeh,.,—3 andi,.x=3. The resultan®-functions are
given by equations (5.48) and (5.49).
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Figure 6. BoundaryB in the z = 1/g-plane for lim_ . U, with k equal to &) 3; (b) 4.
Chromatic zeros fot/y , with (k, r) equal to &) (3,19); b) (4,15) are shown for comparison.

For the familyU;—_4, equations (5.43) and (5.44) yield

Mpmikes = 3(q — 2)(q° — 3¢ + )[(¢* — 3¢ + 3) £ (¢" — 2¢° + 3¢° — 6¢ + 5] (5.59)
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Aopmik—a = 3(q° — 3¢ +3)[(¢> —5¢°+ 9 — 7)
+(q° — 6g° + 15¢* — 24¢° + 35¢% — 42 + 25)'/7]. (5.60)

As before, the boundary8 is determined by equation (5.28). This boundary is plotted
in figure 6@). Let us writeiq,, and Ay, , in terms of the variable = 1/ in polar
coordinates, as given by equation (1.4) and Taylor-expand the resulting expressions for
small¢. We find that the twad.’s that are dominant near= 0, namelyi;, and A, have
squared magnitudes that coincide througtt®© and differ in Q¢®) in the coefficient of
£5cog59). (The other twoi's are subdominant near= 0; indeed, they vanish there, as
A1n]? ~ |Aom|? = 422 4+ O(23).) It follows that as¢ — 0, the boundany3 is given by the
equation|iy,| = |Ag,|, Which yields cogs8) = 0 for ¢ # 0. Hence, 10 curves, forming
five branches of3, cross the point = 0 (and alsoy = 0) at the angles
T T

9—10+n5 0<n<O. (5.61)
Here, the boundarg divides thez-plane into eight regions. As one traverses a circle around
the origin starting with a small positive real value gffirst A1,.x—4 is dominant, and then
the dominant’s alternate betweeR,.;—4 andiy,.x—4, as before withk = 3. The resultant
W-functions again follow from egs. (5.48) and (5.49). Thus, comparing our result for
with k = 3 andk = 4, we observe that the number of curves®passing through = 0,
and the number of regions, increasekas increased. One should also remark that certain
properties of the region depend on whethds even or odd, such as the fact thpasses
throughz = 1 for odd k > 3.

6. Discussion

In this section we discuss general features of the Potts antiferromaigtfehctions on
all of the families of graphs that we have constructed and studied in this paper and our
earlier work, with lociB that are noncompact in thg-plane. In the theorem of section 4
of [13] we gave the general algebraic condition that for a particular family of graphs, the
infinite-vertex limit yields a locud3 that passes through= 0. From our calculations we
have observed a geometrical regularity in the families of graphs that have this property,
namely that in this infinite-vertex limit they all contain an infinite nhumber of different,
nonoverlapping (and nonself-intersecting) circuits, each of which passes through at least two
fixed, nonadjacent vertices. This immediately implies that these aforementioned nonadjacent
vertices have degrees that go to infinity in this limit. One thus sees at the graphical level
why the derivation of the large-series for the reduced functidf,eo({G}, ¢) or equivalently
W ({G}, ¢) on regular lattices with free or some type of periodic boundary conditions works;
in the thermodynamic limit, such lattices do not have the two or more nonadjacent vertices
with degreesA — oo as in the criterion stated above for noncompict

We remark that in studies of the Potts model on regular lattices, it has been useful to
utilize certain boundary conditions that do involve vertices which, in the thermodynamic
limit, have infinite degree\, since these make it possible to preserve exact duality on finite
lattices [23—25]. On the square lattice, the duality-preserving boundary conditions (DBCs)
of types DBC-1 and DBC-2, in the notation of [25] involve one such vertex with> oo
while the DBC-3 type involves two such vertices; however, in the latter case, these are
adjacent. Hence, none of these duality-preserving boundary conditions invalidates @ large-
expansion ofW,eq({G}, ¢g) for this lattice.

An elementary topological property should be noted: for an arbitrary family of graphs,
the continuous locus of point$ whereW is nonanalytic in the infinite-vertex limit does not
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necessarily enclose regions in thlane. Indeed, in [16] we carried out exact calculations
of a variety of infinitely long, finite-width strips of different lattices and found Ifcthat
consisted of arcs (and line segments) that did not enclose regions. (We have also performed
similar calculations for other types of strips with specific types of end-graphs that yield
loci B that do enclose regions.) None of these loci were noncompact ig-fiiane. In
contrast, if the infinite-vertex limit of a family of graphs yields a lod&ithat passes through

z = 0, then, given that it is not a semi-infinite line segment on the positive or negative
z-plane, it necessarily separates theand equivalently the- or y-planes into at least two
different regions wheréV is an analytic function. In [16] we observed that the endpoints of
the arcs (or line segments on the rgahxis) that comprised the nonanalytic locBsvere
determined by the branch points of certain algebraic expressions occurring irsttieat
entered in degeneracy equations of the form of equation (5.28). Since, for examplss the
for the family {U,}, equations (5.43) and (5.44), also contain square roots, one may wonder
what role the branch points of these roots play with regard to the bouritlai}e have
investigated this and have found that the analogues of the arcs extending between branch
points of the square roots, which comprised the various boundaries in [16], do not yield
endpoint singularities o8 here. The reason for this is that either (i) these arcs involve
degeneracy of’s that are nonleading in a given region, or (ii) although they coincide on
part of their length with the actual boundary, the portion of the arcs containing the endpoints
lies off this boundary, in a region where condition (i) holds. This is illustrated in figure 7
for the {U;} family with k = 3, where we show the actual bounddsy as in figure 64),
together with the arcs (drawn in a thicker black) formed by the degeneracy conditions

[X2p| = |A2m] (6.1)
and

1A1p| = |Agm]. (6.2)

The c.c. pair of arcs which constitute the solution locus to equation (6.1), with endpoints
at zz,, 25, = 0.041 06+ 0.436 27i andzy, 25, = 0.547 17+ 0.083 33, lie in the interior of
the regionsRk, and R;. But in these regions, neitheén, nor 1., is dominant; rather, as
we discussed in the section on tbg, family, it is A1, that is dominant in these regions.
Hence, this c.c. pair of arcs is not relevant to the actual boundary. As shown in figure 7, the
locus of solutions for the degeneracy equation (6.2) forms a c.c. pair of arcs that cross each
other and the reat-axis atz = % and have endpoints at,, zj, = 0.10169+ 0.375 29i
and zy,, zj, = 0.731644 0.12612i. The portion of these arcs that lie to the right of
Re(z) = % are not relevant for determining the boundary because in this region, denoted
R, in our section above on thg;} family, the dominants is 1,,. The portion of the
c.c. arcs lying between the multiple (crossing) paint % on the right and the multiple
points forming T-intersections on the left af, zj. = 0.3204+ 0.2110i does coincide
with the boundary, since on this portion the boundary is determined by the degeneracy
of magnitudes of leading eigenvalugs, and A4,, i.e. equation (6.2). However, to the
left of these T-intersection points, the arcs forming the solution locus of equation (6.2)
again deviate from the actual boundary, which is determined by the degeneracy of leading
magnitudes|i,,| = |A1,]. Hence, once again, the left endpoints of these arcs are not
relevant forB3. Thus, the boundarie8 for the families considered here, even aside from
the fact that they automatically enclose regions owing to their noncompactness, in contrast
to the arcs comprising the lo@ for the strip graphs that we studied in [16], also differ
qualitatively in that they do not contain any arc endpoints. We have explained why this
is so even though some of the families do hai® containing branch points singularities.
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Figure 7. Boundarys in the z = 1/g-plane for lim._,» U3, shown together with the locus of
solutions of the degeneracy equations (6.1) and (6.2). See text for discussion.

This emphasizes that the existence of the arc-like structure of theé8ltizat we found in

[16] depended not just on the presence of branch point singularities iidhentering via
equations analogous to equation (5.42) in the denomindoo$ the generating functions

for various strip graphs, but also on the fact that these branch point singularities occurred at
endpoints of arcs in regions where these arcs were the solution loci of magnitude degeneracy
equations for leading's.

From our studies of many homeomorphic expansions, we have found the general feature
that for a given homeomorphic class parametrized by some set of homeomorphic expansion
indices {k;}, the number of regions separated by the lo&us the »r — oo limit is a
nondecreasing function of the above expansion indices. This is in accord with the constraints
from algebraic geometry, in particular, the Harnack theorem [20]. The application of this
theorem is simplest in the case whétés a nonsingular algebraic curve (so that the number
of regions Nreg = Ncomp+ 1 where Neomp denotes the number of connected components
of B), as is the case for the — oo limit of the families 7, , = HEG;_»(Ko, + T))
and Sy, = HEG;_»(K3+ T,) [26]. In these cases (whei& has no multiple points) the
Harnack theorem states that the number of regions is bounded abagyve-ly whereg is
the genus of the algebraic equation in the variablesgiR@nd Im(g) whose solution set
is B, namelyg = (d — 1)(d — 2)/2 whered is the homogeneous degree of this equation.
Since, as our exact solutions show, this degree and the resultant genus increase as a function
of the homeomorphic expansion indices, the Harnack upper bound also increases. It should
be noted, however, that the number of regions may remain the same as one performs a
homeomaorphic expansion (e.ffyeg = 2 for ther — oo limit of HEG;_»(K, + T,) for
k=2,3, and 4, thenVieg =3 for k = 5, 6, and 7, etc).

For algebraic curves with singularities such as multiple points, one no longer has the
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simple relationNreg = Neomp+ 1. Indeed, in the families constructed and analysed in this
paper,B consists of a single connected component, Ngsmp = 1, while the number of
regionsNyeg and the index of the multiple point at= 0 increase as a function of the indices

{k;} describing the homeomorphic expansions. The origin of this increase is the increase
in the degree of the polynomials inthat occur in the degeneracy equations relevant for
the boundary3 in the neighbourhood of = 0 (e.g. egs. (3.11) and the resultant (3.12) for

Hy ,, etc).

The boundarie® found for the families of graphs in this paper exhibit some interesting
differences with respect to the (similarly noncompact) boundaries that we have previously
studied [13]; the latter shared three general properties: (i) a single cui#gasses through
z = 0, so that this point is a regular point dhas an algebraic curve; (ii) § € B, then
Re(q) > 0, i.e. B includes support only for Rg) > 0, or equivalently, for Réz) > 0; and
(iii) if z € B and Rez) =0, thenz = 0. In contrast, for the families studied in the present
paper, the homeomorphic expansions, which are all of the B/p€, yield, in ther — oo
limit, respective boundarie8 that differ in each of these aspects: (i) several branches of
the algebraic curveés pass through the point = 0, which is thus a singular (multiple)
point on this curve; (ii)B includes support for Rg) < 0 or equivalently R¢z) < O,
and (iii) B includes points with R&) = 0 other thanz = 0 itself. Some insight into
this can be gained by recalling the differences in the types of homeomorphic expansions of
starting graphs. Since in the original starting families suckigs, + G- and?p +G,, it
was the connecting bonds linking the vertices of fig subgraph with the vertices of the
G, subgraph that gave rise to the noncompactness of the respective boutijariemkes
sense that homeomorphic expansions of these bonds would alter the nature of the boundaries
at z = 0. Since this change involves multiple branched3opassing through this point at
various angles, as in equations (3.12), (5.34), (5.58) and (5.61), this also shows why this
type of homeomorphic expansion leads to boundaries that include support gy Re0,
butg # 0, oo, i.e. Re(z) < 0 butz # oo, 0. In contrast, since the bonds within te and
K, subgraphs, by themselves, are not directly responsible for the noncompactitgss of
is plausible that homeomorphic expansions of these bonds would not change the nature of
Batz =0.

7. Boundary for Ly limit

Finally, we briefly discuss the boundaly that results when one takes the lindi}, of
equation (2.20), i.ek — oo with » and p fixed, for the families studied in this paper.
We consider the nontrivial range > 2 since forr = 1, families typically degenerate
into tree graphs witt3 = ¢. For the families studied here for which we have obtained
the chromatic polynomials for general including Hy ,, Oy, and U ., we find that this
boundary is simply the unit circlgy — 1| = 1. This is easily understood, since one can re-
express our formulae for chromatic polynomials in terms of polynomiads-ing — 1 using
equations (1.6) and (1.7). From equation (1.7), it follows that the chromatic polynomials
are of the form of equation (1.2) withas the quantity entering in terms raised to respective
powers proportional td, together with possible, terms involving(—1)%, and hence, as
discussed in our earlier work [12[ is determined by the conditioe| = 1. Henceg. = 2
and B has no support for Rg) < 0. Since the locugy — 1| = 1 is compact in the-plane
and since our focus here is on the situation whB(g) is noncompact in the-plane,
passing through = 0, and the connection with the existence of laggseries forW,eq, the

L, limit is not of primary interest here. We mention, however, tBatlivides theg-plane
into two regions,(R1),, and (R2).,, which are the exterior and interior of the unit circle
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lg — 1| = 1 (the subscriptd.; are appended to distinguish these regions from those for the
L, limit). It is straightforward to calculate th#&-function in these two regions in the;
limit of the various families. For example, for thé , family (for fixed r > 2),

W([kIergo Hk,,.], q) —g-1  forge (R, (7.1)
and
'W([k'L”Jo Hk,,], q)| —1  forq e (Ro)u,. (7.2)

8. Conclusions

In this paper we have presented exact calculations of the zero-temperature partition function,
Z(G,q,T = 0), and ground-state degeneracy (per sit€){G}, q), for the g-state Potts
antiferromagnet on a number of families of gragtig for which the boundarys of regions

of analyticity of W in the complexg-plane is noncompact and has the properties that (i)

in the z = 1/g-plane, the point = 0 is a multiple point on5; (ii) 5 includes support for

Re(z) < 0; and (iii) B crosses the imaginary-axis away fromz = 0. Our results yield
insight into the conditions which preclude the existence of larJexylor series expansions

for the reduced functioW,eq = ¢~*W. This insight is valuable since largeexpansions,
where they exist, are of great utility in obtaining approximate values of the exponent of the
ground state entropyy.

Acknowledgment

This research was supported in part by the NSF grant PHY-93-09888.

References

[1] Potts R B 1952Proc. Camb. Phil. Soc48 106
[2]1 Wu F Y 1982Rev. Mod. Phys54 235
Wu F Y 1983Rev. Mod. Physs5 315 (erratum)
[3] Birkhoff G D 1912 Ann. Math.14 42
[4] Read R C 1968. Comb. Theor4 52
Read R C and Tutte W T 1988 Chromatic polynomig@tdected Topics in Graph Theorye® L W Beineke
and R J Wilson (New York: Academic)
[5] Tutte W T 1984 Graph theorfncyclopedia of Mathematics and its Applicatior 21, ed G C Rota (New
York: Addison-Wesley)
[6] Harary F 1969Graph Theory(Reading, MA: Addison-Wesley)
Biggs N L 1993 Algebraic Graph TheoryCambridge: Cambridge University Press)
[7] Pauling L 1960The Nature of the Chemical Borftthaca, NY: Cornell University Press) p 466
[8] Lieb E H and Wu F Y 197ZPhase Transitions and Critical Phenomewal 1, ed C Domb ad M S Green
(New York: Academic) p 331
[9] Some related early work is in Beraha S, Kahane J and Weiss N 1986mb. TheonB 28 52
Baxte R J 1987J. Phys. A: Math. Gern20 5241
Read R C and Rogl G F 1991Graph Theory, Combinatorics, and Applicationsl 2 (New York: Wiley)
p 1009
[10] Rea R C and Roy G F 1991Graph Theory, Combinatorics, and Applicationsl 2 (New York: Wiley)
p 1009
[11] Shrock R and Tsai S-H 199Y. Phys. A: Math. Ger30 495
[12] Shrock R and Tsai S-H 1997hys. RevE 55 5165
Shrock R and Tsai S-H 1997hys. ReVvE 56 1342
[13] Shrock R and Tsai S-H 199hys. RevE 56 3935



[14]

[15]
[16]

(17]

(18]
(19]
(20]

(21]
[22]

(23]
(24]

(25]
(26]

Ground-state degeneracy of Potts antiferromagnets 9665

Shrock R and Tsai S-H 1997hys. RevE 55 6791

Shrock R and Tsai S-H 19%hys. RevE 56 2733

Tsai S-H 1998hys. RevE 57 2686

Shrock R and Tsai S-H 19%hys. RevE 56 4111

Roctek M, Shrock R and Tsai S-H 19%hysicaA 252505

Roctek M, Shrock R and Tsai S-H 19%hysicaA 259 367

Shrock R and Tsai S-H 1998hysicaA 259315

Shrock R and Tsai S-H 1998hys. RevE 58 4332

Nagle J F 1971). Comb. TheorB 10 42

Nagle J F 1968]. Math. Phys9 1007

Bake G A Jr1971J. Comb. TheorB 10 217

Kim D and Entirg | G 1979J. Comb. TheorB 26 327

Lefschetz S 1953\lgebraic GeometryPrinceton, NJ: Princeton University Press)

Hartshorne R 197Algebraic GeometryNew York: Springer)

Tsai S-H 1998°hD ThesisState University of New York

Rea R C and Whitehead E Giscrete Math.at press. We thank Professor Read for kindly giving us a copy
of this preprint

Martin P P 1991Potts Models and Related Problems in Statistical MechafBisgapore: World Scientific)

Chen C N, Hi C K and Wu F Y 1996Phys. Rev. Letfr6 169

Wu F Y et al 1996 Phys. Rev. Let{r6 173

Matveev V and Shrock R 199Bhys. RevE 54 6174

Schrock R and Tsai S-H 19%eprint ITP-SB-98-17



